
Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-1

6 Comparing Congestion-Control Regimes in a Large,
 Fast Network
We continue our investigation of congestion-control mechanisms by comparing relative
behaviors given a large (up to 278000 sources), fast (backbone routers operating up to
192 Gbps), simulated network with web traffic, a few long-lived flows and periods of
heavy file transfers among selected sites. We adopt an unrealistic assumption that all
sources within our simulated network use the same congestion-control regime.1 We
simulate our network under a range of conditions, then change the congestion-control
regime and repeat the simulation for the same conditions. In this way, we can determine
how each congestion-control regime responds to various conditions and then identify any
differences. Various data analyses given later in this section refer to congestion-control
regimes by the identifiers shown in Table 6-1. The details of each regime were explained
previously in Sec. 5.

Table 6-1. Congestion-Control Mechanisms Compared.

 We begin by describing (in Sec. 6.1) our experiment design, including the

topology simulated, the input factors varied (and fixed), the conditions adopted, the
temporal scenario and measured responses. Subsequently (in Sec. 6.2), we describe how
we executed our experiments and collected data. In Sec. 6.3, we discuss our approach to
data analysis. We display our most salient results in Sec. 6.4 and then (in Sec. 6.5) report
our main findings before concluding in Sec. 6.6.

6.1 Experiment Design
The experiment was conducted within a single topology, illustrated in Fig. 6-1. This four-
tier topology was explained and justified in Sec. 3. The top tier is formed by 11 backbone
routers and 14 pairs of long-distance links. The second tier consists of 22 POP routers,
while the third tier comprises 139 access routers. Access routers come in three varieties:
normal (gray), fast (green) and directly connected (red). Fast and directly connected
access routers connect sites to the topology at higher speeds than normal access routers.
Directly connected access routers bypass POP routers and connect directly to the
backbone. The fourth tier, not shown in Fig. 6-1, consists of various sources and receivers
distributed throughout the topology and located under access routers.

1 We adopt more realistic assumptions in sections 8 and 9.

Transmission Control Protocol (Reno)TCP7
Scalable Transmission Control ProtocolScalable6
Hamilton Transmission Control ProtocolHTCP5

High-Speed Transmission Control ProtocolHSTCP4

Fast Active-Queue Management Scalable
Transmission Control ProtocolFAST3

Compound Transmission Control ProtocolCTCP2
Binary Increase Congestion ControlBIC1
Name of Congestion-Avoidance AlgorithmLabelIdentifier

Transmission Control Protocol (Reno)TCP7
Scalable Transmission Control ProtocolScalable6
Hamilton Transmission Control ProtocolHTCP5

High-Speed Transmission Control ProtocolHSTCP4

Fast Active-Queue Management Scalable
Transmission Control ProtocolFAST3

Compound Transmission Control ProtocolCTCP2
Binary Increase Congestion ControlBIC1
Name of Congestion-Avoidance AlgorithmLabelIdentifier

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-2

Figure 6-1. Topology Adopted for Experiments

One of the reasons for adopting such a topology is to permit flows to transit paths

with a variety of characteristics; thus, congestion-control mechanisms can be compared
with respect to path class as defined in Table 6-2, where each path class consists of one or
more flow type. A flow type is defined by the type of the access routers under which the
source and receiver are located. The flow types in Table 6-2 are color coded to match the
access routers depicted in Fig. 6-1. Since a flow cannot expect better performance than
access routers provide, a flow is placed into the class dictated by its slowest access router.
Thus, the “Very Fast” path class includes only DD flows, while DF flows are allocated to
the “Fast” path class and DN flows are allocated to the “Typical” path class and so on.

Table 6-2. Definition of Three Path Classes

A

B

D

C

F

G

H

I

K

J

A1

A2

A1a

A1b

A1c

A1d

A1e

E

A2b

A2g

Access Router Bfast x Normal Speed

A1f

A2a

Access Router Bdirect x Normal Speed

B0a

B1

B1b

B2g

B2f

B1a

B2

B2a
B2b

B2c

B2d

B2e D1

D1b

D2g

F1d

D1a

D2

D2a

D2b
D2c D2d

D2e

C1

C1a

C1b
C1c C1d

C1e

C2

C1f

C2f

C2e
C2dC2c

C2b

C2a E1

E1b

C2g

E2f

E1a

E2E2a
E2b
E2c

E2d E2e

G1b

G1c G1dG1e

G2e

G2c

G2b

G2a

C1G1
G1a

G1f

G2

G2d
G2f

F0a

F1

F1b

F1a

F1c

F2

F2a
F2b F2c F2d

F2e

H2

H2a

H2b

H2c H2d
H2e

H1

H1b

H2g

H1a

F2f

J1

J1e

J1dJ1c
J1b

J1a
J1f

J2

J2a

J2f

J2b

J2c

J2d

J2e
I0a

I1c

I1b
I1a

I1

I1d

I2

I2c
I2bI2a

I2d

K1

K1b

J2g

K1a

I2f

K2

K2b

G2g

H2f

K2a

I2e

D2f

E0a

K0a

J1g

I1e I1f

G1g

I1g

I2g

F2g

C1g E2g

F1g

F1fF1e

A2d

A2c

B1c

B1d

D1dD1c
H1c

E1c E1d

H1d

K1d
K1c

K2dK2c

C0a

Access Router Normal Speed

Bsources * U Sources (not shown) and
4* Bsources * U Receivers (not shown)
under each Access Router

Source & receiver under normal access routerNN

Source or receiver under fast access router and
correspondent under normal access routerFN

Source or receiver under directly connected access router
and correspondent under normal access routerDN

Typical

Source & receiver under fast access routerFF

Source or receiver under directly connected access router
and correspondent under fast access routerDF

Fast

Source & receiver under directly connected access routerDDVery Fast

DefinitionFlow TypePath Class

Source & receiver under normal access routerNN

Source or receiver under fast access router and
correspondent under normal access routerFN

Source or receiver under directly connected access router
and correspondent under normal access routerDN

Typical

Source & receiver under fast access routerFF

Source or receiver under directly connected access router
and correspondent under fast access routerDF

Fast

Source & receiver under directly connected access routerDDVery Fast

DefinitionFlow TypePath Class

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-3

6.1.1 Simulation Parameters
Within the framework provided by the topology given in Fig. 6-1, a wide range of
network conditions may be simulated by specifying values for various parameters, or
input factors, as discussed previously in Sec. 3 and Sec. 4. For the current experiment, we
identified six “robustness” factors, shown in Table 6-3, which establish the conditions
under which we compare the alternate congestion-control mechanisms listed in Table 6-1.
Other simulation parameters are fixed across all experiments, as we document below.

Table 6-3. Robustness Factors Adopted for Comparing Congestion-Control Mechanisms

Our selection of robustness factors was guided by the sensitivity analysis
discussed in Sec. 4, which considered the influence of 11 parameters on model behavior.
Seven of the 11 parameters exhibited most significant influence; we adopted six of those
as robustness factors for our current experiment. For each factor, we selected two
settings; thus we use a two-level experiment design. Network speed (x1) defines the
fundamental capacity of backbone routers in packets per time step (ppts). Recall,
however, that this fundamental capacity is multiplied by BBspeedup to determine the full
capacity of each backbone router. The speeds of other routers within the topology are
derived from the value of x1 using various transformations, as shown in Table 6-4, which
lists fixed parameters associated with the network model.

Table 6-4. Fixed Network Parameters

Sources and receivers may operate at one of two speeds: Hbase (8 ppts) or Hfast
(80 ppts). This simulates the situation in real networks, where some computers connect at
100 Mbps, while others connect at 1 Gbps. For this experiment, we permit 40% of

RTTxCapacity/SQR(N)RTTxCapacityBuffer Sizing Algorithmx6
50100File Sizex5

12Propagation Delayx4
Skewed (.1/.6/.3)Uniform (.33/.33/.33)Source Distributionx3

25005000Think Timex2
40008000Network Speedx1

Minus (-1) ValuePLUS (+1) ValueDefinitionIdentifier

RTTxCapacity/SQR(N)RTTxCapacityBuffer Sizing Algorithmx6
50100File Sizex5

12Propagation Delayx4
Skewed (.1/.6/.3)Uniform (.33/.33/.33)Source Distributionx3

25005000Think Timex2
40008000Network Speedx1

Minus (-1) ValuePLUS (+1) ValueDefinitionIdentifier

ValueDefinitionParameter

1Factor by which buffer size will be multipliedQfactor

0.4Probability that a source is fastP(FastHost)
80Speed of fast sources (960 Mbps)Hfast
8Speed of basic sources (96 Mbps)Hbase

2Fast access router speed = x1/R2/R3xBfastBfast
10Directly connected access router speed = x1/R2/R3xBdirectBdirect
10Access routers speed = x1/R2/R3R3
4POP routers speed = x1/R2R2
2Backbone router speed = x1xBBspeedupBBspeedup

ValueDefinitionParameter

1Factor by which buffer size will be multipliedQfactor

0.4Probability that a source is fastP(FastHost)
80Speed of fast sources (960 Mbps)Hfast
8Speed of basic sources (96 Mbps)Hbase

2Fast access router speed = x1/R2/R3xBfastBfast
10Directly connected access router speed = x1/R2/R3xBdirectBdirect
10Access routers speed = x1/R2/R3R3
4POP routers speed = x1/R2R2
2Backbone router speed = x1xBBspeedupBBspeedup

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-4

sources (and receivers) to operate at the fast speed, while remaining sources (and
receivers) operate at the slower speed.

Factors x4 (propagation delay) and x6 (buffer-sizing algorithm) also alter
characteristics of the network. When x4 = 2, the fundamental propagation delays encoded
in the topology are doubled. Factor x6 selects the algorithm used to size router buffers.
Setting the Qfactor = 1 ensures that the results of the chosen algorithm are used without
further scaling of buffer sizes.

The factors controlling network characteristics may be translated into domain-
specific values to give a sense for the nature of the network being simulated. For
example, assuming the each time step is one millisecond, the speed of a backbone router
when x1 = 8000 may be translated as 8000 p/ms x 2 x 1000 sec/ms x 12000 bits/p = 192
Gbps. Table 6-5 shows the simulated speeds for all types of routers given the two values
for factor x1. Similar reasoning indicates that fast sources operate at 960 Mbps and basic
sources operate at 96 Mbps.

Table 6-5. Domain View of Router Speeds

Table 6-6 illustrates the range of propagation delays being used within the

experiment. Setting x6 = 1 (Minus) simulates a topology with an average one-way, path
propagation delay comparable to a network in the continental United States that has some
links to Europe. Setting x6 = 2 (PLUS) simulates a topology that could span from East
Asia to Western Europe, while transiting across North America. Since buffer sizes are
computed based on router speed and propagation delay, Table 6-7 gives the range of
buffer sizes that are simulated in our experiments.

Table 6-6. Path Propagation Delays Simulated

Table 6-7. Buffer Sizes Simulated

100416Minus (-1)
2008112PLUS (+1)

MaxAvgMin

100416Minus (-1)
2008112PLUS (+1)

MaxAvgMin

12 Gbps24 GbpsDirectly Connected Access

2.4 Gbps4.8 GbpsFast Access
1.2 Gbps2.4 GbpsNormal Access
12 Gbps24 GbpsPOP
96 Gbps192 GbpsBackbone

Minus (-1)PLUS (+1)Router

12 Gbps24 GbpsDirectly Connected Access

2.4 Gbps4.8 GbpsFast Access
1.2 Gbps2.4 GbpsNormal Access
12 Gbps24 GbpsPOP
96 Gbps192 GbpsBackbone

Minus (-1)PLUS (+1)Router

25,879
162,764

1,302,110
Max

14,557
91,555

732,437
Avg

6,470
40,691

325,528
Min

PLUS (+1)

36920791Access
908505221POP

4,6542,6061,153Backbone
MaxAvgMinRouter

Minus (-1)

25,879
162,764

1,302,110
Max

14,557
91,555

732,437
Avg

6,470
40,691

325,528
Min

PLUS (+1)

36920791Access
908505221POP

4,6542,6061,153Backbone
MaxAvgMinRouter

Minus (-1)

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-5

Factor x2, think time, represents the average (exponentially distributed) interval
(in time steps) before a source initiates a new flow after completing a previous flow. A
longer think time leads to lower demand on the network. Factor x3 controls the
distribution of sources throughout the topology. The uniform distribution tends to spread
congestion more evenly across the topology, while the skewed distribution tends to
concentrate congestion more toward fast access routers. The number of sources in the
topology is determined by a combination of factor x3 and two fixed factors, Bsources and

U, shown in Table 6-8. The net effect on the maximum number of simulated sources is
given in Table 6-9. Table 6-8 also gives the fixed distribution of receivers, which creates
a bias toward placing receivers under typical access routers. Further, Table 6-8 records
the initial slow-start threshold – fixed to an arbitrarily large number for the current
simulation experiment.

Table 6-8. Fixed Parameters Related to Sources and Receivers

Table 6-9. Number of Simulated Source

Several fixed parameters, shown in Table 6-10, control the operation of the
simulation. The basic simulation time step is set to 1 ms and measurements are taken 5
times/sec, i.e., measurement interval (mi) duration is 200 ms. Total simulated time is
(7500 mi/5 mi/s) = 1500 s, which amounts to (1500 s/60 s/m =) 25 minutes simulated for
each condition. In order to reduce memory consumption, measures are buffered for only
(1500 mi/5 mi/s/60 s/m =) 5 minutes before being written to disk. Table 6-10 also shows
the fixed random number seed used for each run.

Table 6-10. Fixed Simulation Control Parameters

For each condition, the 25 simulated minutes are orchestrated into the same
scenario, shown in Fig. 6-2. Each time period consists of simulated traffic with specific
properties, as defined below. The first 10 minutes, used as a warm-up period, consists of

174,600278,000
Minus (-1)PLUS (+1)

174,600278,000
Minus (-1)PLUS (+1)

0.001Duration of Each Time StepTSD
200000Random Number SeedRnseed

1500Number of Measurement Intervals BufferedMB
7500Number of Measurement Intervals SimulatedMI

200Measurement Interval Size in Time StepsM

ValueDefinitionParameter

0.001Duration of Each Time StepTSD
200000Random Number SeedRnseed

1500Number of Measurement Intervals BufferedMB
7500Number of Measurement Intervals SimulatedMI

200Measurement Interval Size in Time StepsM

ValueDefinitionParameter

ValueDefinitionParameter

231/2Initial slow-start thresholdsstINT

0.2Probability receiver under directly connected access routerP(Nrd)

0.2Probability receiver under fast access routerP(Nrf)

0.6Probability receiver under normal access routerP(Nr)

2Avg. sources per access router = Bsources x UU

1000Basic unit for sources per access routerBsources

ValueDefinitionParameter

231/2Initial slow-start thresholdsstINT

0.2Probability receiver under directly connected access routerP(Nrd)

0.2Probability receiver under fast access routerP(Nrf)

0.6Probability receiver under normal access routerP(Nr)

2Avg. sources per access router = Bsources x UU

1000Basic unit for sources per access routerBsources

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-6

simulated Web traffic. The subsequent 15 minutes are divided into three, five-minute
periods. At the beginning of the first time period (TP1), on-going Web traffic is
augmented by three long-lived flows, which continue for the duration of the simulation.
All flows initiated on very fast paths (i.e., DD flows) during TP2 carry jumbo file
transfers. At the onset of TP3, all newly initiated flows return to a pattern of simulated
Web traffic; any residual backlog of on-going, jumbo file transfers started during TP2
will continue into TP3 until they complete or the simulation ends. As explained below in
Sec. 6.1.3, separate measurements are made in each time period, and selected
measurements are totaled over the entire 25 minutes of the simulated scenario.

Figure 6-2. Scenario Adopted for Each Simulated Condition

Table 6-11. Fixed Parameters Specifying Simulated User Traffic

Table 6-11 specifies the primary fixed parameters controlling generation of user

traffic over the 25-minute scenario. Table 6-12 gives fixed parameters for the three long-
lived flows. Fundamental file sizes within the simulation are chosen from a Pareto
distribution with a mean given by factor x5, which equals either 50 or 100 packets
depending upon condition. The shape parameter () for the Pareto distribution is fixed at
1.5. Factor x5 represents Web pages with an average size of (50 packets x 1500
bytes/packet =) 75 Kbytes or (100 packets x 1500 bytes/packet =) 150 Kbytes. Recall,
however, that MesoNet packets have no size; thus, file sizes are specified in packets.
With a fixed probability of 0.01, i.e., P(F), a document will be downloaded from a Web
site. Document sizes are determined by multiplying a file size selected for a Web page by
a fixed factor of 10, i.e., Fx; thus, downloaded documents average either 500 packets (750
Kbytes) or 1000 packets (1.5 Mbytes), depending on the value of x5. This combination of
Web pages and documents makes up the pattern of user traffic labeled as normal Web
traffic.

ValueDefinitionParameter

100Jumbo file size = file (or document) size x JxJx

0.8Jumbo file transfers cease after Joff x 25 minutesJoff

0.6Jumbo file transfers begin after Jon x 25 minutesJon

0.01Probability a file is a documentP(F)

10Document size = x5 x FxFx

1.5Shape parameter for Pareto distribution of file sizes

ValueDefinitionParameter

100Jumbo file size = file (or document) size x JxJx

0.8Jumbo file transfers cease after Joff x 25 minutesJoff

0.6Jumbo file transfers begin after Jon x 25 minutesJon

0.01Probability a file is a documentP(F)

10Document size = x5 x FxFx

1.5Shape parameter for Pareto distribution of file sizes

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-7

Jumbo file transfers, initiated on all DD flows started during TP2, are controlled
by three parameters. Jon determines when jumbo transfers may begin and Joff defines
when initiation of jumbo transfers must cease. The size of a jumbo transfer is determined
by multiplying the file size chosen for normal Web traffic by a factor of 100 (Jx). This
means that jumbo file transfers will average ((50 x .9 + 500 x .1) x 100 =) 9500 packets
(14.25 Mbytes) or ((100 x .9 + 1000 x .1) x 100 =) 19000 packets (18.5 Mbytes),
depending upon the setting of factor x5. Note that all transfers – whether Web pages,
documents or jumbo files – are subject to the heavy-tailed nature of the Pareto
distribution; thus, transfers may be much larger than the average size.

Table 6-12. Fixed Parameters Specifying Long-Lived Flows

Table 6-12 gives the details for the three long-lived flows that commence in TP1
and continue throughout the remainder of the simulated scenario. Each long-lived flow
transmits continuously at whatever rate can be achieved over a very fast (DD) path. The
maximum transmission rate for long-lived flows is 80000 pps (i.e., long-lived sources
and receivers operate at the rate defined by Hfast). Flow L1 traverses the length of the
topology. Flow L3 traverses the width of the topology. Flow L2 traverses the middle of
the topology. These flows serve several purposes. First, the flows can be individually
tracked and measured in detail. This reveals the temporal evolution of the flows, as well
as how the flows are influenced by other flows. Second, since the flows transit different
distances across the network, measurements can be taken to determine the lag time before
each flow reaches its maximum transmission rate. Third, the flows transit directly-
connected access routers; so in TP2 the influence of jumbo file transfers may be
observed.

6.1.2 Conditions Simulated
For the six factors enumerated in Table 6-2, a two-level experiment design would require
simulating (26 =) 64 conditions. Given the size and speed of the network we wished to
simulate, we decided we could afford examining only 32 conditions. For this reason, we
adopted a 26-1 orthogonal fractional factorial (OFF) design. To generate the subset of
conditions required by the design, we constructed conditions by selecting values from
Table 6-2 as specified in Table 6-13, a template where each row defines a condition as a
combination of the six input factors. The resulting, instantiated experiment design (in
Table 6-14) provides a good balance of individual factors as well as orthogonal
combinations of factors. The 26-1 design is a resolution VI design, which means that main
effects will be confounded only with five-term interactions. In addition, two-term
interactions will be confounded only with four-term interactions. Our previous sensitivity
analysis revealed that our model is driven primarily by main effects; even two-term

F0a
I0a

K0a

Receiver Router

0.4 x 25 mins.E0aShort-distance flowL3
0.4 x 25 mins.C0aMedium-distance flowL2

0.4 x 25 mins.B0aLong-distance flowL1

Start TimeSource RouterDefinitionIdentifier

F0a
I0a

K0a

Receiver Router

0.4 x 25 mins.E0aShort-distance flowL3
0.4 x 25 mins.C0aMedium-distance flowL2

0.4 x 25 mins.B0aLong-distance flowL1

Start TimeSource RouterDefinitionIdentifier

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-8

interactions were not very evident. For these reasons, we can obtain all necessary
information by simulating only 32 of the 64 conditions defined by our input factors.

Table 6-13. Template Specifying a 26-1 Orthogonal Fractional Factorial Design

6.1.3 Responses Measured
The remainder of the experiment design addresses the system responses measured for
each simulated condition. At the top level, we measured a collection of 45 instantaneous
responses averaged over each time period and we aggregated 28 measures across all 25
minutes of the simulated scenario. We designate the instantaneous responses as y1
through y45 and we designate the aggregate responses as T.y1 through T.y28. We begin
by defining the instantaneous average measures, which may be divided into three
categories: (1) measures of macroscopic network behavior, (2) measures of user
experience and (3) measures of buffer usage in designated access routers.

6.1.3.1 Measures of Macroscopic Behavior. We selected 12 responses (see Table 6-15) to
represent macroscopic behavior in the simulated network. Each response is measured
during each measurement interval, which forms a time series. The measured values are
then averaged over the relevant time period. Five responses (highlighted in yellow)
characterize the status of non-idle flows. Idle flows are those flows waiting within a think
period. Non-idle flows are either connecting (y42) or active (y1). Active flows may be
operating within initial slow start (y43) or within the normal TCP congestion-control

Factor-> X1 X2 X3 X4 X5 X6
Condition -- -- -- -- -- --

1 -1 -1 -1 -1 -1 -1
2 +1 -1 -1 -1 -1 +1
3 -1 +1 -1 -1 -1 +1
4 +1 +1 -1 -1 -1 -1
5 -1 -1 +1 -1 -1 +1
6 +1 -1 +1 -1 -1 -1
7 -1 +1 +1 -1 -1 -1
8 +1 +1 +1 -1 -1 +1
9 -1 -1 -1 +1 -1 +1

10 +1 -1 -1 +1 -1 -1
11 -1 +1 -1 +1 -1 -1
12 +1 +1 -1 +1 -1 +1
13 -1 -1 +1 +1 -1 -1
14 +1 -1 +1 +1 -1 +1
15 -1 +1 +1 +1 -1 +1
16 +1 +1 +1 +1 -1 -1
17 -1 -1 -1 -1 +1 +1
18 +1 -1 -1 -1 +1 -1
19 -1 +1 -1 -1 +1 -1
20 +1 +1 -1 -1 +1 +1
21 -1 -1 +1 -1 +1 -1
22 +1 -1 +1 -1 +1 +1
23 -1 +1 +1 -1 +1 +1
24 +1 +1 +1 -1 +1 -1
25 -1 -1 -1 +1 +1 -1
26 +1 -1 -1 +1 +1 +1
27 -1 +1 -1 +1 +1 +1
28 +1 +1 -1 +1 +1 -1
29 -1 -1 +1 +1 +1 +1
30 +1 -1 +1 +1 +1 -1
31 -1 +1 +1 +1 +1 -1
32 +1 +1 +1 +1 +1 +1

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-9

regime (y44) or an alternate regime (y45). The precise nature of the alternate congestion-
control regime depends upon which congestion-avoidance algorithm (recall Table 6-1) is
adopted for a particular set of runs. As one would expect, y45 will always be zero when
normal TCP Reno congestion-avoidance is in use and y44 will be zero for FAST.

Table 6-14. Instantiated Robustness Conditions for 26-1 Experiment Design

Table 6-15. Responses Characterizing Macroscopic Behavior

Two responses (highlighted in blue) represent network-wide throughput, either as
packets output (y3) per measurement interval or as flows completed (y5) per
measurement interval. Three responses (highlighted in orange) summarize network-wide

Average congestion-window increases per active flowy2

Average flows completed per measurement intervaly5

Average number of active (i.e., connected) flowsy1
Average number of active flows in initial slow starty43
Average number of active flows in normal congestion-control modey44
Average number of active flows in alternate congestion-control modey45

Average congestion window per active flowy4

Average round-trip queuing delayy8
Average smoothed round-trip time (SRTT)y7
Average retransmission ratey6

Average packets output per measurement intervaly3

Average number of connecting flowsy42
DefinitionResponse

Average congestion-window increases per active flowy2

Average flows completed per measurement intervaly5

Average number of active (i.e., connected) flowsy1
Average number of active flows in initial slow starty43
Average number of active flows in normal congestion-control modey44
Average number of active flows in alternate congestion-control modey45

Average congestion window per active flowy4

Average round-trip queuing delayy8
Average smoothed round-trip time (SRTT)y7
Average retransmission ratey6

Average packets output per measurement intervaly3

Average number of connecting flowsy42
DefinitionResponse

Factor-> X1 X2 X3 X4 X5 X6
Condition -- -- -- -- -- --

1 4000 2500 .1/.6/.3 1 50 RTTxCapacity/SQR(N)
2 8000 2500 .1/.6/.3 1 50 RTTxCapacity
3 4000 5000 .1/.6/.3 1 50 RTTxCapacity
4 8000 5000 .1/.6/.3 1 50 RTTxCapacity/SQR(N)
5 4000 2500 .3/.3/.3 1 50 RTTxCapacity
6 8000 2500 .3/.3/.3 1 50 RTTxCapacity/SQR(N)
7 4000 5000 .3/.3/.3 1 50 RTTxCapacity/SQR(N)
8 8000 5000 .3/.3/.3 1 50 RTTxCapacity
9 4000 2500 .1/.6/.3 2 50 RTTxCapacity

10 8000 2500 .1/.6/.3 2 50 RTTxCapacity/SQR(N)
11 4000 5000 .1/.6/.3 2 50 RTTxCapacity/SQR(N)
12 8000 5000 .1/.6/.3 2 50 RTTxCapacity
13 4000 2500 .3/.3/.3 2 50 RTTxCapacity/SQR(N)
14 8000 2500 .3/.3/.3 2 50 RTTxCapacity
15 4000 5000 .3/.3/.3 2 50 RTTxCapacity
16 8000 5000 .3/.3/.3 2 50 RTTxCapacity/SQR(N)
17 4000 2500 .1/.6/.3 1 100 RTTxCapacity
18 8000 2500 .1/.6/.3 1 100 RTTxCapacity/SQR(N)
19 4000 5000 .1/.6/.3 1 100 RTTxCapacity/SQR(N)
20 8000 5000 .1/.6/.3 1 100 RTTxCapacity
21 4000 2500 .3/.3/.3 1 100 RTTxCapacity/SQR(N)
22 8000 2500 .3/.3/.3 1 100 RTTxCapacity
23 4000 5000 .3/.3/.3 1 100 RTTxCapacity
24 8000 5000 .3/.3/.3 1 100 RTTxCapacity/SQR(N)
25 4000 2500 .1/.6/.3 2 100 RTTxCapacity/SQR(N)
26 8000 2500 .1/.6/.3 2 100 RTTxCapacity
27 4000 5000 .1/.6/.3 2 100 RTTxCapacity
28 8000 5000 .1/.6/.3 2 100 RTTxCapacity/SQR(N)
29 4000 2500 .3/.3/.3 2 100 RTTxCapacity
30 8000 2500 .3/.3/.3 2 100 RTTxCapacity/SQR(N)
31 4000 5000 .3/.3/.3 2 100 RTTxCapacity/SQR(N)
32 8000 5000 .3/.3/.3 2 100 RTTxCapacity

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-10

congestion. One reflection of congestion is the average retransmission rate (y6). Two
other reflections appear in congestion-induced delay: average SRTT (y7), from which the
average round-trip propagation delay may be subtracted to reveal the average round-trip
queuing delay (y8).

The two remaining responses (in green) relate to the congestion window for an
average active flow. One (y2) measures the average number of window increases per
flow in a measurement interval, while the other (y4) measures the average congestion-
window size (in packets) per flow. These measures reflect congestion but can also reflect
details associated with the operation of specific congestion-control algorithms.

6.1.3.2 Measures of User Experience. We use goodput as a fundamental measure of user
experience. We define goodput as the number of packets per second (pps) received at the
user level on a given flow. Thus, goodput excludes retransmissions. Since various flows
transit the topology on paths that possess different characteristics, we measure user
experience for flows on each path class (recall Table 6-2). Recognizing that goodput can
be influenced by the number of flows sharing the same path, we measure the relevant
characteristics. For example, Table 6-16 shows how we characterize user experience for
flows on very fast (DD) paths. We measure not only average goodput (y9) but also the
average number of active flows (y10) and the average number of completed flows (y11).
We assume that completed flows finish at uniformly distributed times in a given
measurement interval. We then compute (y12) as the average aggregate number of pps
delivered on all DD flows. This allows us to investigate average goodput in a nuanced
fashion. We make similar measurements for (DF and FF) flows transiting fast paths
(Table 6-17) and for those (DN, FN, NN) flows transiting typical paths (Table 6-18).

Table 6-16. Responses Characterizing User Experience on Very Fast Paths

Table 6-17. Responses Characterizing User Experience on Fast Paths

Average aggregate number of DD packets delivered per second =
y9x(y10+(y11/2))y12

Average number of DD flows completed per measurement intervaly11

Average number of active DD flowsy10

Average goodput (pps) for DD flowsy9

DefinitionResponse

Average aggregate number of DD packets delivered per second =
y9x(y10+(y11/2))y12

Average number of DD flows completed per measurement intervaly11

Average number of active DD flowsy10

Average goodput (pps) for DD flowsy9

DefinitionResponse

Average goodput (pps) for FF flowsy21

Average number of active FF flowsy22
Average number of FF flows completed per measurement intervaly23
Average aggregate number of FF packets delivered per second =
y21x(y22+(y23/2))y24

Average aggregate number of DF packets delivered per second =
y13x(y14+(y15/2))y16

Average number of DF flows completed per measurement intervaly15

Average number of active DF flowsy14

Average goodput (pps) for DF flowsy13

DefinitionResponse

Average goodput (pps) for FF flowsy21

Average number of active FF flowsy22
Average number of FF flows completed per measurement intervaly23
Average aggregate number of FF packets delivered per second =
y21x(y22+(y23/2))y24

Average aggregate number of DF packets delivered per second =
y13x(y14+(y15/2))y16

Average number of DF flows completed per measurement intervaly15

Average number of active DF flowsy14

Average goodput (pps) for DF flowsy13

DefinitionResponse

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-11

Table 6-18. Responses Characterizing User Experience on Typical Paths

We also measure user experience individually for the three long-lived flows

defined in the scenario. For these flows, we measure only average goodput, as shown in
Table 6-19.

Table 6-19. Responses Characterizing User Experience on Long-Lived Flows

6.1.3.3 Measures of Buffer Usage. The construction of the simulated topology ensures
that most (if not all) significant buffer usage occurs at the access routers, most of which
have much lower speeds than the POP and backbone routers. The topology used in the
simulation consists of 139 access routers. We chose to analyze buffer usage only for the
six directly connected access routers, as shown in Table 6-20. For each router, we
measure average buffer saturation, defined as the ratio of buffers in use to buffers
available.

Table 6-20. Responses Charactering Buffer Usage in Directly Connected Access Routers

Average goodput (pps) for the short-distance flow (L3)y35

Average goodput (pps) for the medium-distance flow (L2)y34

Average goodput (pps) for the long-distance flow (L1)y33

DefinitionResponse

Average goodput (pps) for the short-distance flow (L3)y35

Average goodput (pps) for the medium-distance flow (L2)y34

Average goodput (pps) for the long-distance flow (L1)y33

DefinitionResponse

Average buffer saturation for router E0ay38
Average buffer saturation for router F0ay39
Average buffer saturation for router I0ay40
Average buffer saturation for router K0ay41

Average buffer saturation for router C0ay37

Average buffer saturation for router B0ay36

DefinitionResponse

Average buffer saturation for router E0ay38
Average buffer saturation for router F0ay39
Average buffer saturation for router I0ay40
Average buffer saturation for router K0ay41

Average buffer saturation for router C0ay37

Average buffer saturation for router B0ay36

DefinitionResponse

Average goodput (pps) for NN flowsy29

Average number of active NN flowsy30

Average number of NN flows completed per measurement intervaly31
Average aggregate number of NN packets delivered per second =
y21x(y22+(y23/2))y32

Average aggregate number of FN packets delivered per second =
y25x(y26+(y27/2))y28

Average goodput (pps) for FN flowsy25

Average number of active FN flowsy26
Average number of FN flows completed per measurement intervaly27

Average aggregate number of DN packets delivered per second =
y17x(y18+(y19/2))y20

Average number of DN flows completed per measurement intervaly19

Average number of active DN flowsy18

Average goodput (pps) for DN flowsy17

DefinitionResponse

Average goodput (pps) for NN flowsy29

Average number of active NN flowsy30

Average number of NN flows completed per measurement intervaly31
Average aggregate number of NN packets delivered per second =
y21x(y22+(y23/2))y32

Average aggregate number of FN packets delivered per second =
y25x(y26+(y27/2))y28

Average goodput (pps) for FN flowsy25

Average number of active FN flowsy26
Average number of FN flows completed per measurement intervaly27

Average aggregate number of DN packets delivered per second =
y17x(y18+(y19/2))y20

Average number of DN flows completed per measurement intervaly19

Average number of active DN flowsy18

Average goodput (pps) for DN flowsy17

DefinitionResponse

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-12

 6.1.3.4 Aggregate Measures. We measure 28 responses over the course of the entire 25-
minute scenario, including the warm-up period. These responses fall into three broad
categories: (1) measures of macroscopic behavior, (2) measures of user experience and
(3) measures of flow distribution among backbone routers. We discuss each of these in
turn.

As shown in Table 6-21, we aggregate the number of data packets injected (T.y1)
into the network as well as the number of packets delivered (T.y2) over the entire 25
minutes simulated. We provide similar measures for flows connected (T.y3) and
completed (T.y4). For connected flows, we also measure (T.y5) the average number of
SYN packets sent per flow. This provides some measure of the degree to which
congestion impedes the ability of flows to connect.

Table 6-21. Aggregate Responses Characterizing Macroscopic Behavior

We characterize user experience for completed flows in each path class using two
measures: (1) aggregate number of flows completed and (2) average per-flow goodput on
the completed flows. We consider completed flows in aggregate for two reasons. First,
we can include flows across the entire 25 simulated minutes. Second, some flows may
have trouble completing; thus, we can view goodput for completed flows as a best case
measure of user experience. Below, we identify the measures for each path class: very
fast paths (Table 6-22), fast paths (Table 6-23) and typical paths (Table 6-24).

Table 6-22. Responses Characterizing User Experience for Completed Flows on Very Fast Paths

Table 6-23. Responses Characterizing User Experience for Completed Flows on Fast Paths

Aggregate flows connectedT.y3
Aggregate flows completedT.y4
Average SYNs sent per flowT.y5

Aggregate packets outputT.y2

Aggregate packets inputT.y1

DefinitionResponse

Aggregate flows connectedT.y3
Aggregate flows completedT.y4
Average SYNs sent per flowT.y5

Aggregate packets outputT.y2

Aggregate packets inputT.y1

DefinitionResponse

Average goodput (pps) for completed DD flowsT.y7

Aggregate number of DD flows completedT.y6

DefinitionResponse

Average goodput (pps) for completed DD flowsT.y7

Aggregate number of DD flows completedT.y6

DefinitionResponse

Average goodput (pps) for completed DF flowsT.y9

Aggregate number of FF flows completedT.y12

Average goodput (pps) for completed FF flowsT.y13

Aggregate number of DF flows completedT.y8

DefinitionResponse

Average goodput (pps) for completed DF flowsT.y9

Aggregate number of FF flows completedT.y12

Average goodput (pps) for completed FF flowsT.y13

Aggregate number of DF flows completedT.y8

DefinitionResponse

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-13

Table 6-24. Responses Characterizing User Experience for Completed Flows on Typical Paths

The final set of responses measure the distribution of flows transiting the 11
backbone routers. As shown in Table 6-25, we simply total the number of completed
flows that transit each backbone router during the 25 simulated minutes. Measuring these
responses enables us to detect whether any of the congestion-control regimes shift the
workload experienced by backbone routers.

Table 6-25. Responses Characterizing Distribution of Flows among Backbone Routers

6.2 Experiment Execution and Data Collection
In this section, we shift gears to discuss the mechanics of executing the experiments and
collecting the data. We describe the resources available for conducting the simulations
and also the resource requirements. In addition, we define the format in which we
collected data to capture our measured responses.

6.2.1 Experiment Execution
We simulated seven congestion-control mechanisms (recall Table 6-1) under the same 32
conditions (recall Table 6-14), requiring (7 x 32 =) 224 separate simulation runs. We had
six available compute servers with the characteristics defined in Table 6-26. Each
compute server provided 8 processors; thus, we had a total of (6 x 8 =) 48 processors on

Average goodput (pps) for completed FN flowsT.y15

Aggregate number of NN flows completedT.y16

Average goodput (pps) for completed DN flowsT.y11

Aggregate number of FN flows completedT.y14

Average goodput (pps) for completed NN flowsT.y17

Aggregate number of DN flows completedT.y10

DefinitionResponse

Average goodput (pps) for completed FN flowsT.y15

Aggregate number of NN flows completedT.y16

Average goodput (pps) for completed DN flowsT.y11

Aggregate number of FN flows completedT.y14

Average goodput (pps) for completed NN flowsT.y17

Aggregate number of DN flows completedT.y10

DefinitionResponse

Aggregate completed flows transiting backbone router FT.y23

Aggregate completed flows transiting backbone router GT.y24

Aggregate completed flows transiting backbone router HT.y25

Aggregate completed flows transiting backbone router IT.y26

Aggregate completed flows transiting backbone router JT.y27

Aggregate completed flows transiting backbone router DT.y21

Aggregate completed flows transiting backbone router ET.y22

Aggregate completed flows transiting backbone router BT.y19

Aggregate completed flows transiting backbone router CT.y20

Aggregate completed flows transiting backbone router KT.y28

Aggregate completed flows transiting backbone router AT.y18

DefinitionResponse

Aggregate completed flows transiting backbone router FT.y23

Aggregate completed flows transiting backbone router GT.y24

Aggregate completed flows transiting backbone router HT.y25

Aggregate completed flows transiting backbone router IT.y26

Aggregate completed flows transiting backbone router JT.y27

Aggregate completed flows transiting backbone router DT.y21

Aggregate completed flows transiting backbone router ET.y22

Aggregate completed flows transiting backbone router BT.y19

Aggregate completed flows transiting backbone router CT.y20

Aggregate completed flows transiting backbone router KT.y28

Aggregate completed flows transiting backbone router AT.y18

DefinitionResponse

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-14

which we could execute simulations in parallel. Each of the compute servers was
provisioned with 32 Gbytes of memory. Two of the servers (ws9 and ws10) had four
dual-core AMD Opertron™ 8218 processors operating at 2.6 GHz, while the remaining
servers (ws11-ws4) had four dual-core AMD Opertron™ 8222 SE processors operating at
3 GHz. All of the compute servers executed under the control of the 64-bit version of
Microsoft Windows2 Server 2003™.

Table 6-26. Characteristics of Compute Servers Used to Execute the Simulations

Given 48 processors (also referred to as central-processing units, or CPUs), we
were able to run one congestion-control mechanism simultaneously against all 32
conditions and we could run another congestion-control mechanism against half (16) of
the conditions. As shown in Table 6-27, we ran simulations for five congestion-control
mechanisms (BIC, CTCP, FAST, HTCP and TCP) on the four faster compute servers
(ws11-ws14) and we ran simulations for the other two (HSTCP and Scalable TCP) on the
slower compute servers (ws9-ws10).

Table 6-27. Processing Requirements for Simulations Mapped to Specific Compute Servers
(Units are Processor Days)

2 Our simulation model, MesoNet, is written in the SLX simulation language. The SLX compiler and run-
time require the Microsoft Windows™ operating system.

Windows Server 2003 R2 x64
Edition SP2323.08ws13

Windows Server 2003 R2 x64
Edition SP2323.08ws14

Windows Server 2003 R2 x64
Edition SP2323.08ws12

Windows Server 2003 R2 x64
Edition SP2323.08ws11

Windows Server 2003 R2 x64
Edition SP2322.68ws10

Windows Server 2003 R2 x64
Edition SP2322.68ws9

Operating
System

Memory
(GB)

Speed
(GHz)

Physical
Processors

Compute
Server

Windows Server 2003 R2 x64
Edition SP2323.08ws13

Windows Server 2003 R2 x64
Edition SP2323.08ws14

Windows Server 2003 R2 x64
Edition SP2323.08ws12

Windows Server 2003 R2 x64
Edition SP2323.08ws11

Windows Server 2003 R2 x64
Edition SP2322.68ws10

Windows Server 2003 R2 x64
Edition SP2322.68ws9

Operating
System

Memory
(GB)

Speed
(GHz)

Physical
Processors

Compute
Server

6.61

1.51

3.46

110.5

Scalable

26.37
(13.18x2)

6.5728.425.635.845.175.855.94
Max. CPU time

(one run)

1.611.281.401.441.331.16
Min. CPU time

(one run)

13.70
(6.85x2)

3.3914.772.943.012.923.042.86
Avg. CPU time

(per run)

219.1108.6472.594.296.493.497.291.5
CPU time
(32 runs)

TotalsHSTCPTotalsTCPHTCPFASTCTCPBIC

Compute Servers ws9-ws10Compute Servers ws11-ws14

6.61

1.51

3.46

110.5

Scalable

26.37
(13.18x2)

6.5728.425.635.845.175.855.94
Max. CPU time

(one run)

1.611.281.401.441.331.16
Min. CPU time

(one run)

13.70
(6.85x2)

3.3914.772.943.012.923.042.86
Avg. CPU time

(per run)

219.1108.6472.594.296.493.497.291.5
CPU time
(32 runs)

TotalsHSTCPTotalsTCPHTCPFASTCTCPBIC

Compute Servers ws9-ws10Compute Servers ws11-ws14

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-15

Each simulated condition required about 1.25 Gbytes of memory; thus, running 8
simulations in parallel on one compute server required about 10 Gbytes, or about 1/3 of
the available memory. On the other hand, as indicated in Table 6-27, running all 224
simulations required substantial processing resources: (472.5 + 219.1 =) 691.6 processor
(CPU) days. Running 48 simulations in parallel, we could potentially have finished the
experiment in (691.6 processor days/48 processors =) 14.4 days. Achieving this goal
required some astute management of the runs. For example, launching 32 runs for a given
congestion-control mechanism and then waiting for all runs to complete prior to starting
the next set would advance progress at a pace congruent with the maximum processor
time required among the 32 simulations run for each congestion-control mechanism. As
shown in the last row of Table 6-27, this naïve approach would have completed the
simulations in 28.42 days, which is the time required to run the five congestion-control
mechanisms on ws11-ws14. Using the same naïve approach, the two mechanisms
simulated on ws9 and ws10 could complete (28.42 - 26.37 =) two days sooner. Note that
since only 16 of the 32 conditions could be run in parallel on ws9 and ws10 the processor
time required must be doubled, e.g., (6.57 + 6.61) x 2 = 26.37 days.

To complete the simulations in about two weeks one needs to achieve a rate of
progress close to the average processor time per run, shown in the second row of Table 6-
27. This can be done by first estimating the relative run time required by each simulated
condition, and then sorting the conditions by estimated run time into two lists: (1)
shortest-to-longest and (2) longest-to-shortest. The two lists define a mapping function
for scheduling simulation runs. Whenever a simulation finishes for a specific condition
on the first list, select the next condition to start based on its mate from the second list. In
this way, as short conditions finish they are replaced by long conditions and vice versa.
This enables completing the simulations in just over two weeks, the maximum of 14.77
days and 13.7 days, as shown in the second row of Table 6-27.

Why does the simulation require so much processor time? Each experiment
simulates the evolution of up to hundreds of thousands of simultaneously active flows for
a period of 25 simulated minutes. Each flow that starts during the simulation must be
modeled, as well as every packet sent on each flow. Every packet transits several routers
as it propagates through the simulated topology. As shown in Table 6-28, the average
condition requires simulating just over 74 million flows during the 25 simulated minutes.
This amounts to simulating around 7 billion data packets, each of which has a matching
acknowledgment; thus, an average of 14 billion packets are sent in a given simulation
run. For all conditions across all congestion-control algorithms, more than 16.5 billion
flows and 3 trillion packets (1.5 trillion data packets and 1.5 trillion acknowledgments)
must be simulated. In Sec. 7 we investigate whether a scaled down network simulation
can provide sufficient information while requiring less processor time.

Table 6-28. Characterization of the Number of Flows and Data Packets Simulated

 1,548,371,719,08416,583,418,069Total All Runs

11,917,420,154154,914,953Max. Per Condition
3,146,870,57140,966,013Min. Per Condition
6,912,373,74674,033,116Avg. Per Condition

Data Packets SentFlows CompletedStatistic

1,548,371,719,08416,583,418,069Total All Runs
11,917,420,154154,914,953Max. Per Condition

3,146,870,57140,966,013Min. Per Condition
6,912,373,74674,033,116Avg. Per Condition

Data Packets SentFlows CompletedStatistic

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-16

6.2.2 Data Collection
We collected summary response measurements into four files: one file for each of three,
five-minute time periods (recall Fig. 6-2) and one file containing data aggregated across
the entire 25-minute scenario. Table 6-29 shows the format used for each time-period
file. Each file consists of (7 x 32 =) 224 rows of 47 columns. The header row, shown for
clarity in Table 6-29, was not included in the data file. The first column identifies the
congestion-control algorithm and the second column identifies the condition. Each of the
remaining columns contains the value for one of the 45 responses measured for the
relevant time period (recall Sec. 6.1.3). A response reflects the average value across all
measurement intervals within the time period.

Table 6-29. Format Adopted for Each Time-Period Data File

As shown in Table 6-30, we adopted a similar format for the file containing
aggregate responses. In this case, the file included only 30 columns because the number
of responses was limited to 28. As discussed in Sec. 6.1.3.4, most values reflect an
aggregation across the entire 25-minute scenario, while some values reflect an average
goodput or SYN rate across the scenario.

Table 6-30. Format Adopted for Reporting Aggregate Measures

…………………

099872.35…1.899736108421.6317

0363.9507…25.6616627644.4327

00.116…41.457915333.9927

023487.56…9.11577334108.2217

…………………

83.2173323397.35…9.12645828287.67321

110.8673602.5607…24.93412107357311

…………………

0.5553330.758…41.3502615370.521

1834.65321090.14…9.11170833473.8111

y45y44…y2y1RunAlgorithm

…………………

099872.35…1.899736108421.6317

0363.9507…25.6616627644.4327

00.116…41.457915333.9927

023487.56…9.11577334108.2217

…………………

83.2173323397.35…9.12645828287.67321

110.8673602.5607…24.93412107357311

…………………

0.5553330.758…41.3502615370.521

1834.65321090.14…9.11170833473.8111

y45y44…y2y1RunAlgorithm

…………………

66485298215894…55576169336158229285317

1088005113993455…92451210859245995194327

2893431116634422…7562570309756441518627

2116309713255301…5854382727613268143417

…………………

1082559913946759…92444737729246017312321

66549588205819…56532658366267074928311

…………………

2892152316627869…7565416432756916413721

2109854113251058…5849131237614132398611

T.y28T.y27…T.y2T.y1RunAlgorithm

…………………

66485298215894…55576169336158229285317

1088005113993455…92451210859245995194327

2893431116634422…7562570309756441518627

2116309713255301…5854382727613268143417

…………………

1082559913946759…92444737729246017312321

66549588205819…56532658366267074928311

…………………

2892152316627869…7565416432756916413721

2109854113251058…5849131237614132398611

T.y28T.y27…T.y2T.y1RunAlgorithm

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-17

To support some detailed analyses (as discussed below in Sec. 6.3) we also used
selected time-series data files as output directly by MesoNetHS. A time series for a
particular response simply provides the raw measurement data that was used to create the
summarization reported in Table 6-29.

6.3 Data-Analysis Approach
In this section, we introduce and explain our approach to data analysis. For illustrative
purposes, we also provide a few insights into the behavior of our simulated network. We
defer a complete presentation of key results until Sec. 6.4.

We leveraged three main techniques for analyzing data: (1) cluster analysis, (2)
detailed analysis of individual responses and (3) summary analysis of all responses across
conditions. Where advantageous, we also adopted some useful strategies to explore the
data. We address each of these topics in turn, beginning with cluster analysis.

6.3.1 Cluster Analysis
We use cluster analysis to provide a comprehensive comparison of differences among all
congestion-control algorithms for all responses and conditions. Results from the cluster
analysis establish whether any of the algorithms generate a distinctive response to the
various conditions. To perform the analysis we used hierarchical clustering tools from the
MATLAB™ Statistics Toolbox™ [84]. Hierarchical clustering requires selection of a
function to compute distances between points in the vector space composed by the
response data. We adopted the following standardized Euclidean distance function.

(1)

Equation (1) computes the inter-algorithm distance in 45-dimension space, where each
dimension m represents one response. Here, Yi and Yj represent the response vector for ith
and jth congestion-control algorithms. (Note that we use a 28-dimension space when
clustering aggregate results.) Distances for each response are normalized with respect to
response variance. This enables distances to be placed on a similar scale. (Any response
with zero standard deviation is excluded from the distance computation.) A pair of
algorithms with close proximity may be linked together within a cluster.

We measure the linkage between clusters of algorithms as the average distance
between responses associated with each algorithm in each cluster. The linkage function,
shown in (2), uses the Euclidean-distance function from (1).

(2)

Equation (2) computes the linkage between any two clusters r and s, containing nr and ns
congestion-control algorithms, respectively. Yk,r represents the response vector for the kth
congestion-control algorithm in cluster r; similarly, Yl,s represents the response vector for

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-18

the lth congestion-control algorithm in cluster s. The linkage function is used to place
binary clusters into larger clusters, forming a hierarchical tree.

The final step in hierarchical clustering is to suggest which congestion-control
algorithms should be included within the same cluster. For this purpose, we use the
MATLAB™ dendrogram () function to color the lines on the hierarchical tree whenever
the linkage value between two clusters falls below 70% of the maximum linkage value.
The net result from clustering is a diagram, such as Fig. 6-3, suggesting relationships
among the congestion-control algorithms. Identifiers for the seven congestion-control
algorithms are plotted on the x axis and the y axis displays standardized distances
between algorithms in the subordinate cluster(s). Here, the clustering suggests algorithms
four and six give similar results and algorithms one and two give similar results. The
remaining algorithms are dissimilar, with algorithm 3 being most dissimilar from the
others.

Figure 6-3. Dendrogram Illustrating Clustering Based on Responses for Condition 4
During Time Period One (TP1)

Clustering must be performed individually on the various conditions because the

conditions can yield results that are quite dissimilar. One may obtain an overall picture of
clustering across conditions by plotting together 32 dendrograms, one per condition. Fig.
6-4 shows such a plot for seven congestion-control algorithms and related responses
covering TP1. Review of the plot reveals that algorithm 3 appears distinctive under about
23 of the 32 conditions. Further, the responses generated by the different algorithms are
indistinguishable in six conditions – in fact, are identical for condition 12. The remaining
three conditions (2, 27 and 32) find small distinctions among the algorithms. As Fig. 6-4
illustrates, clustering analysis can reveal some significant overall patterns in the data.

A natural next step is to consider why algorithm 3 is distinctive in many of the
conditions but not in all. In other words, can we determine properties that distinguish
among the conditions and then map those properties into hypotheses regarding the
operation of algorithm 3? Given the input factors (x1…x6) defining the conditions, we
suspect that distinct conditions represent differing levels of congestion within the
simulated network. To confirm our suspicion, we can sort the conditions using some
property, such as loss rate or retransmission rate, which reflects congestion. Fig. 6-5
displays a bar chart where conditions on the x axis are sorted in increasing order of
retransmission rate (response y6) on the y axis. The bar chart shows that 16 conditions
have much higher retransmission rates (reflecting higher congestion) than the others.
Thus, half the conditions lead to significant congestion and half do not. To quantify the
difference, we include an inset bar chart in Fig. 6-5. The inset shows that the highest
retransmission rate (for condition 11) among the uncongested conditions is an order of

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-19

magnitude or more lower than the lowest retransmission rate (for condition 18) among
the congested conditions. Examining the uncongested conditions in detail, one can
declare somewhat arbitrary distinctions between conditions with no congestion (N), little
congestion (L) and moderate congestion (M). We label the abscissa of Fig. 6-5
accordingly.

Figure 6-4. Cluster Analysis for 32 Conditions Using Data from Time Period One

Figure 6-5. Conditions Ordered from Least to Most Congested

We can select one uncongested and one congested condition to examine more
closely. Fig. 6-6 plots several time series that, taken together, show the evolution of flow
states for (uncongested) condition 4 under standard TCP congestion control. The x axis
displays time over all three time periods measured for the simulated scenario. The y axis

0

0.1

0.2

0.3

0.4

0.5

0.6

12 8 20 2 32 26 3 14 4 15 27 9 16 10 28 11 18 24 22 19 17 6 1 29 7 30 5 25 23 13 31 21

Condition

R
et

ra
ns

m
is

si
on

 R
at

e

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

12 8 20 2 32 26 3 14 4 15 27 9 16 10 28 11

Condition

Re
tra

ns
m

is
si

on
 R

at
e

Max. = 0.0018

LN M

C

0

0.1

0.2

0.3

0.4

0.5

0.6

12 8 20 2 32 26 3 14 4 15 27 9 16 10 28 11 18 24 22 19 17 6 1 29 7 30 5 25 23 13 31 21

Condition

R
et

ra
ns

m
is

si
on

 R
at

e

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

12 8 20 2 32 26 3 14 4 15 27 9 16 10 28 11

Condition

Re
tra

ns
m

is
si

on
 R

at
e

Max. = 0.0018

0

0.1

0.2

0.3

0.4

0.5

0.6

12 8 20 2 32 26 3 14 4 15 27 9 16 10 28 11 18 24 22 19 17 6 1 29 7 30 5 25 23 13 31 21

Condition

R
et

ra
ns

m
is

si
on

 R
at

e

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

12 8 20 2 32 26 3 14 4 15 27 9 16 10 28 11

Condition

Re
tra

ns
m

is
si

on
 R

at
e

Max. = 0.0018

LN M

C

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-20

indicates the number of active (red curve) and connecting (yellow curve) flows.
Additional curves decompose the active flows by congestion state. For TP1 (3000-4500)
the plot shows that most of the active flows operate in initial slow-start (green curve).
This means that the network is sufficiently uncongested that most file transfers complete
without a lost packet. Things change during TP2 (4500-6000) as jumbo file transfers
induce congestion in the directly connected access routers. Congestion leads to losses,
which increases the number of flows operating under normal congestion-control
procedures (brown curve). As jumbo file transfers diminish during TP3 (6000-7500),
congestion ebbs so that, by time 6500, most active flows again complete file transfers
without a lost packet. The same curves plotted for the other 15 uncongested conditions
show similar patterns.

Figure 6-6. Evolution of Flow States over Three Time Periods under Condition 4 for Standard TCP

The situation is much different for congested conditions. Fig. 6-7 plots the

evolution of flow states for condition five under standard TCP congestion control. Notice
that the number of active flows (red) averages about 125000. Here, the vast majority
(about 105000) of those flows are operating under normal congestion-control procedures
(brown), which means these flows have suffered lost packets. Notice also that network
congestion is sufficiently high so that introducing jumbo file transfers during TP 2 (4500-
6000) makes very little difference in the overall evolution of flow states. The same curves
plotted for the other 15 congested conditions show similar patterns.

Combining this new information with the previous cluster analysis provides
substantial insight about conditions that lead to the distinctive behavior of algorithm 3.
Fig. 6-8 reproduces an augmented version of Fig. 6-4. Here, we annotate the cluster plot
for each condition with a character indicating the relative level of associated congestion.
Reviewing the plot reveals that algorithm 3 is distinctive under conditions showing
moderate to heavy congestion. The distinctiveness of algorithm 3 fades under conditions
with little or no congestion. Further, under the least congested condition (12), all seven
congestion-control mechanisms produced identical responses.

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

1000

2000

3000

4000

5000

6000

7000

8000
Evolution of Flows Condition 4 - TCP

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

1000

2000

3000

4000

5000

6000

7000

8000
Evolution of Flows Condition 4 - TCP

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-21

Figure 6-7. Evolution of Flow States over Three Time Periods under Condition 5 for Standard TCP

Figure 6-8. Cluster Analysis for Time Period One – Conditions Labeled with Congestion Level

Clustering, combined with some supplementary data analyses, can provide us
with a useful overall view of differences among the congestion-control algorithms. In our
example, during TP1, algorithm 3 shows a distinctive behavior that appears tied to the
level of congestion in the network. Further, under little or no congestion, the congestion-
control algorithms are largely indistinguishable. Unfortunately, cluster analysis does not

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2 .104

4 .104

6 .104

8 .104

1 .105

1.2 .105

1.4 .105
Evolution of Flows Condition 5 - TCP

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2 .104

4 .104

6 .104

8 .104

1 .105

1.2 .105

1.4 .105
Evolution of Flows Condition 5 - TCP

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-22

specify the precise nature of the distinctions among the various alternative congestion-
control algorithms. For more insight, we need to apply a technique for the detailed
analysis of individual responses. We next explain the technique we used to investigate
each response.

6.3.2 Detail Analysis of Individual Responses
For each time period, we subjected each response to a statistical analysis for each of the
32 conditions simulated. We then generated a plot displaying the relevant information.
The plot shows, for each condition, which algorithm produced the largest difference
(compared to the average for all algorithms) in the response variable. The plot also
reports the results of a numerical test to determine whether the largest difference was
statistically significant. In addition, the plot reports the absolute and relative magnitudes
of the largest effect. We produced (45 x 3 =) 135 plots; each plot represents a single
response for a single time period. The best approach to explaining the analysis is to
discuss a sample plot, such as Fig. 6-9.

Figure 6-9. Sample Plot Analyzing the Influence of Condition and Congestion-Control Algorithm on

the Average Number of Active Flows (y1)

 The abscissa in Fig. 6-9 shows the 32 conditions. Here, conditions are sorted by
increasing magnitude of the largest difference in the response variable produced by a
congestion-control algorithm. The upper left corner of the plot gives the minimum and
maximum values for the raw responses when considering the data across all algorithms
and conditions. The ordinate gives the residual about the mean. For each condition, we
plot a box within which we place algorithm identifiers (1-7). The location of each

|Rel. Effect| (%)

Extreme Algorithm ID
Log10(|Effect|)

Grubbs Stat (Cut = 2.08)
|Rel. Effect| (%)

Extreme Algorithm ID
Log10(|Effect|)

Grubbs Stat (Cut = 2.08)

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-23

identifier indicates the distance of the response generated by that algorithm (i.e., the
residual) from the mean response over all algorithms for the same condition. Here, the
residuals range from zero (all algorithms in condition 12) to about negative 5500 (for
algorithm 3 in condition 22).

Below each box we display vertically the settings (+/-) for each input factor
(x1…x6) that generated the relevant condition. The remainder of the plot consists of four
32-column rows of quantitative information, where each column gives four statistics
applicable to the algorithms and responses for the related condition. The first statistic
identifies the extreme algorithm – that is the algorithm with the largest residual. The
identifier is listed as -1 when the algorithms cannot be distinguished numerically. This
arises for condition 12 in Fig. 6-9. Explicitly listing the extreme algorithm is helpful
when the residuals are too close together to be visible in the box – for example in
conditions 12 to 26.

The second statistic reports the absolute magnitude (log 10) associated with the
maximum residual. The exponent of the absolute magnitude can be reported concisely on
the plot at the cost of some numerical precision. The third statistic reports the relative
effect as a percentage of the mean response. A domain analyst can consider both the
absolute and relative differences when judging whether an effect is significant from an
engineering view.

The fourth statistic reports G, which results from a Grubbs’ test [88] associated
with the extreme residual for each condition. The Grubbs’ test computes G by dividing
the largest residual by the sample standard deviation.

(3)

Assuming no significant differences among congestion-control algorithms, we

would expect measured residuals to be normally distributed. For this reason, residuals
that deviate too far from the mean could be characterized as statistically significant
outliers. For our plots we declare an outlier significant when G > 2.08. The entire column
(factors and statistics) is highlighted for conditions where the Grubbs’ test identifies an
outlier. Green identifies positive outliers (e.g., conditions 16, 28 and 7 in Fig. 6-9) and
red identifies negative outliers (e.g., conditions 23, 17, 30, 5, 29 and 22 in Fig. 6-9).
Columns are printed in black when no numerical difference could be detected among the
responses (e.g., condition 12 in Fig. 6-9). The remaining columns are printed in blue.

What can we conclude from Fig. 6-9? Not much. Algorithm 3 appears as a
significant negative outlier under six conditions (all congested). This result could occur
by chance with a probability of about 0.17. Algorithm 3 also appears as a statistically
significant positive outlier under three conditions (one congested). This result has about a
.70 probability of occurring by chance. We selected Fig. 6-9 as an example because it
illustrates most traits of such plots. We defer more interesting findings until we discuss
pattern seeking in Sec. 6.3.4.2 and then overall results in Sec. 6-4. Next, we discuss a
technique to summarize our detailed analysis of individual responses. The summary
considers all responses and all conditions for each time period.

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-24

6.3.3 Condition-Response Summary Analysis
The plots associated with detailed analysis of individual responses can be quite revealing;
however, they do not give a broad view across responses and conditions in a form similar
to that provided by the dendrogram plots from cluster analysis. We can, however, extract
information from analyzing individual responses and then present a holistic picture across
responses and conditions. Fig. 6-10 shows such a condition-response summary plot for
TP1.

Figure 6-10. Summary Plot Identifying Statistically Significant Outliers in Time Period One

Each row in Fig. 6-10 corresponds to a specific condition (identified on the left).
The first six columns report settings (+/-) for the six input factors defining the condition.
The remaining columns represent individual responses. Vertical blue lines group related
responses. For example, responses 1 through 8 relate to macroscopic behavior, responses
9 through 12 relate to goodput on DD flows, responses 42 through 45 relate to evolution
of flow state and so on. Cells, formed by condition-response intersections, contain an
algorithm identifier when there is a statistically significant outlier – red denotes low
outliers and green denotes high outliers.

 A cursory scan of Fig. 6-10 finds that algorithm 3 arises as a statistically
significant outlier in many cells. The highest concentration of outliers appears for
congested conditions; fewer outliers appear for less congested conditions. No algorithm
appears as an outlier for condition 12. These results agree with the cluster analysis (recall
Fig. 6-4) for the same time period. Both analyses identify algorithm 3 as distinctive under

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-25

congested conditions. Fig. 6-10 has the advantage of identifying precisely the particular
responses for which algorithm 3 exhibits different behavior.

To focus analysis on the most significant behavioral differences, we can apply
various filters when generating a condition-response summary plot. For example, Fig. 6-
11 shows a summary plot reporting statistically significant outliers that also achieve a
relative difference greater than 10%. The pattern of outliers is now sparser, so we can
focus our analysis on responses y2 (congestion-window increase rate), y6 (retransmission
rate), y42 (average number of connecting flows), y44 (average number of active flows in
normal congestion-control mode) and y45 (average number of active flows in alternate
congestion-control mode). The responses measuring buffer usage (y36 – y41) exhibit
outliers but there is no evident pattern.

Figure 6-11. Filtered Summary Plot for Time Period One Identifying Statistically Significant Outliers
that also Cause a Relative Effect > 10%

We can exclude y44 and y45 from further consideration because algorithm 3

(FAST) never operates in normal congestion-control mode. This means that we should
expect algorithm 3 to be an outlier exhibiting a large effect for responses y44 and y45.
This is certainly the case in all the analyses we conducted. With this knowledge, we
completed a revised cluster analysis with responses y44 and y45 excluded. The revised
clustering results (reported in Sec. 6.4) continue to identify algorithm 3 as distinctive.

Fig. 6-11 suggests that algorithm 3 is most different with respect to response y6 –
retransmission rate. Here, algorithm 3 produces retransmission rates more than 10%
higher than the other algorithms in 21 of the 32 conditions. In 12 conditions the

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-26

retransmission rate for algorithm 3 is more than 30% higher – more than 50% higher in
five conditions. Clearly, this is a significant finding, which we discuss more fully in later
sections.

Fig. 6-11 also shows that for 14 conditions algorithm 3 (FAST) produces more
than a 10% higher rate of window increase than the other algorithms. All 14 conditions
are among the most congested. Recall from Sec. 5 that FAST aims to provide a stable
congestion window that reaches equilibrium, changing very little over time. The
simulations in Sec. 5 also showed that when FAST had insufficient buffers a rapid
oscillating behavior ensued where the congestion window was cut in half on a loss and
then quickly increased up to another loss and so on. Under these rapid oscillations, FAST
would tend to increase congestion windows very frequently. Thus, under FAST, the
larger the retransmission rate, the higher the window-increase rate.

 What about y42 (average number of connecting flows)? A high retransmission
rate arises from a high loss rate. To establish flows, a source and receiver must exchange
SYN and SYN+ACK packets. Since these packets are also subject to being lost, we
expect that a high loss rate can impede connection establishment. This means that on
average more SYNs must be sent to connect a flow. Thus, given a higher retransmission
rate for algorithm 3, we should expect more flows to be pending in the connecting state.

This discussion illustrates that condition-response summary plots can be quite
powerful – allowing an analyst to identify key differences separating algorithms. In Sec.
6.4 we report summary plots for all three time periods, as well as for the aggregate
responses. As we will demonstrate, the summary plots impart substantial insight
regarding system behavior.

6.3.4 Data Exploration
In previous sections we introduced the main techniques we used to analyze system
behavior. We augmented these analysis techniques with some exploratory approaches
that allowed us to investigate specific questions. In this section we briefly describe and
illustrate selected augmentations.

6.3.4.1 Extrapolating from Time Series. MesoNetHS samples responses at each
measurement interval and produces related time series. We generate our summary
responses by averaging time series of interest over particular intervals. As discussed in
Sec. 6.3.1, an analyst may examine raw time series as necessary to gain additional
insight. Here, we give an example that illustrates pitfalls that may arise when focusing on
time series for only a few selected conditions.

 Fig. 6-12 plots seven time series (one for each congestion-control algorithm) for
condition 4, a lightly congested condition. Each time series reports the average goodput
for DD flows (y9) over the final three time periods (15 minutes total) of the experiment
scenario. The plot shows the general effect of the scenario on DD flows. During the first
time period (3000-4500) average per-flow goodputs fluctuate in the neighborhood of 500
pps. Jumbo flows commence at time 4500, which leads to a rapid increase in average
goodput up to around 10000 pps. As additional jumbo flows arrive, average goodput falls
as bandwidth must be shared among more flows. New jumbo flows cease to arrive
starting at time 6000, which enables average goodput to increase as residual jumbo flows
are cleared. As the mix of flows moves away from jumbo flows and back to normal Web

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-27

traffic, average goodput trails off. Had the scenario continued, all residual jumbo flows
would eventually clear the system and average goodput would return to levels seen in the
first time period. This general behavior is representative of the time varying scenario
across all conditions. Fig. 6-13 plots seven time series for the number of active DD flows
(y10) over the same time periods and under the same condition.

Figure 6-12. Average Per-Flow Goodput (pps) on DD Flows (y9) for Seven Congestion-Control
Algorithms under Condition 4 over Three Time Periods

Figure 6-13. Number of Active DD Flows (y10) for Seven Congestion-Control
Algorithms under Condition 4 over Three Time Periods

Fig. 6-12 indicates that Scalable TCP provides higher average goodput during the

period of jumbo file transfers. Recall that in Sec. 5 we found that under a restricted
topology with few flows, Scalable TCP tended to provide unfair allocation of bandwidth.

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2000

4000

6000

8000

1 .104

1.2 .104

BIC
TCP
CTCP
FAST
HS TCP
HTCP
SCALABLE

 DD Flows Condition 4

Time

y9

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2000

4000

6000

8000

1 .104

1.2 .104

BIC
TCP
CTCP
FAST
HS TCP
HTCP
SCALABLE

 DD Flows Condition 4

Time

y9

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

200

400

600

800

1000

1200

1400
BIC
TCP
CTCP
FAST
HS TCP
HTCP
SCALABLE

 DD Flows Condition 4

Time

y1
0

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

200

400

600

800

1000

1200

1400
BIC
TCP
CTCP
FAST
HS TCP
HTCP
SCALABLE

 DD Flows Condition 4

Time

y1
0

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-28

Does relative unfairness relate to the behavior shown in Fig. 6-12? The current simulation
scenario was set up to ensure that a concentration of jumbo files would be transferred on
DD flows between times 4500 and 6000. Yet, Fig. 6-13 reveals that Scalable TCP has the
fewest number of active DD flows in that time period (BIC has second fewest). Given a
finite (bottleneck) capacity to deliver packets, flows will naturally receive higher average
goodput when the bottleneck is shared by fewer flows. Fig. 6-14 shows that a bottleneck
capacity exists, as the total rate of packets delivered on DD flows (y12) during the second
time period reaches a level of just under 2 million pps for each of the congestion-control
algorithms.

Figure 6-14. Aggregate Packet Delivery Rate (pps) DD Flows (y12) for Seven Congestion-Control
Algorithms under Condition 4 over Three Time Periods

 How can we explain the fact that fewer jumbo flows are active simultaneously
under condition 4 in TP2 for Scalable TCP? The answer can be found by examining the
completion rate for DD flows (y11) during TP2, as shown in Table 6-31. Scalable TCP
completes slightly more (.3 to .4) DD flows per measurement interval than other
congestion-control algorithms. Remember that the measurement interval is only 200 ms
in duration. Considered over the entire 5 minutes (1500 measurement intervals)
comprising TP2, Table 6-31 shows that Scalable TCP completes 500 to 600 more DD
flows. More flows completed per unit time leads to fewer active flows, which yields
higher goodput per flow.

Does this behavior repeat across a wide range of conditions? In selected
uncongested conditions (such as 8 and 12) Scalable TCP provides the worst goodput for
DD flows during TP2. An overall examination of y9 across all conditions (see Fig. 6-15)
reveals no particular pattern, which illustrates why we must rely on comprehensive
results and not focus in detail on particular conditions to the exclusion of others.

In summary, examining time series for individual conditions can provide
interesting and useful information regarding the movement of system responses over
time. Unfortunately, one must examine a response across all conditions in order to reveal

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

5 .105

1 .106

1.5 .106

2 .106

2.5 .106

BIC
TCP
CTCP
FAST
HS TCP
HTCP
SCALABLE

 DD Flows Condition 4

Time

y1
2

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

5 .105

1 .106

1.5 .106

2 .106

2.5 .106

BIC
TCP
CTCP
FAST
HS TCP
HTCP
SCALABLE

 DD Flows Condition 4

Time

y1
2

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-29

general trends and patterns. Comprehensive examination across responses and conditions
can best be achieved through cluster analysis and condition-response summary plots.
Examination of individual time series must be used for focused purposes and not to draw
general inferences.

Table 6-31. Per-Flow Completion Rate and Total Completions for DD Flows in

Time Period Two under Condition 4

.

Figure 6-15. Analyzing the Influence of Condition and Congestion-Control Algorithm on the Average

Goodput for DD Flows (y9) during Time Period Two

6.3.4.2 Seeking Patterns. We characterized Fig. 6-15 as revealing no particular pattern.
This implies that we will be seeking patterns not only in the dendrogram and condition-
response summary plots but also in plots giving detailed analyses of individual responses.

11,2967.53TCP
11,8147.88SCALABLE
11,3077.54HTCP
11,1337.42HSTCP
11,3537.57FAST

11,4017.60CTCP
11,6107.74BIC

DD Flows Completed in Time Period 2DD Flow Completion RateAlgorithm

11,2967.53TCP
11,8147.88SCALABLE
11,3077.54HTCP
11,1337.42HSTCP
11,3537.57FAST

11,4017.60CTCP
11,6107.74BIC

DD Flows Completed in Time Period 2DD Flow Completion RateAlgorithm

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-30

Such patterns correspond to columns in a condition-response summary plot where
identical algorithms are reported as statistically significant outliers across a substantial
number of conditions. For example, Fig. 6-16 illustrates a pattern in a detailed analysis
plot for congestion-window size (y4) during TP3. Comparing Fig. 6-15 and Fig. 6-16
illustrates the difference between a non-pattern and a pattern. The pattern in Fig. 6-16
reports that during TP3 algorithm 2 (CTCP) yields a congestion window significantly
larger than the other algorithms. This result pervades 30 of the 32 conditions and is
statistically significant in 28 conditions (and nearly significant in the other two).

Figure 6-16. Analyzing the Influence of Condition and Congestion-Control Algorithm on
Congestion-Window Size (y4) during Time Period Three

6.3.4.3 Investigating Data Subsets. In cases where a summary plot reveals one particular
algorithm as distinctive, an analyst may naturally wonder whether the distinction might
be sufficient to mask more subtle distinctions among the remaining algorithms. To
investigate such questions, one can exclude response data for the distinctive algorithm
and then reconsider the analysis on the remaining subset of response data. For example,
Fig. 6-17 gives dendrograms resulting from a cluster analysis for TP1 when response data
for algorithm 3 is omitted. The resulting plot reveals that the responses are very similar
across the remaining algorithms in about half the conditions. In some conditions there
appears to be a slight tendency for algorithms 1 (BIC) and 6 (Scalable TCP) to cluster
together, while algorithm 5 (HTCP) is somewhat distinctive under four conditions.
Overall, the cluster analysis for TP1 with algorithm 3 excluded shows the behavior
among the remaining algorithms to be largely indistinguishable. There appears some
tendency for algorithms 1 and 6 to exhibit slightly similar behaviors somewhat different

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-31

from other algorithms. A condition-response summary plot for the same subset of data
identifies few statistically significant outliers.

Figure 6-17. Cluster Analysis Using Data from Time Period One – Algorithm 3 Excluded

6.3.4.4 Interactive Animation. MesoNetHS produces a large amount of data – simulation
of a congestion-control algorithm under one condition can produce about 165 Mbytes of
data. Much of the data relates to temporal behavior in individual routers in the network
topology. Such data naturally lends itself to animation within a layout of the network
topology. To accommodate such animation, as well as to support abstract analysis of
multidimensional data, colleagues produced DiVisa [83], an interactive system for data
visualization. DiVisa, freely available for public use, requires only access to a Java™
run-time environment; thus, DiVisa is portable to a range of operating systems.

Fig. 6-18 depicts a sample screenshot where we used DiVisa to monitor packet
losses throughout the network topology for algorithm 1 (BIC) under condition 10. The
screenshot shows three main panels: a (leftmost) visualization-control panel and two
plots. The control panel permits us to define plots characteristics. In this case, we
assigned the leftmost plot panel to hold the network topology (routers and links only),
while the rightmost plot panel graphs packet losses over time. Further, in the topology
panel we assign color to represent the rate of packet losses – from orange for minimal
losses to red for high losses. The particular screenshot shows an animation of the
evolution of packet losses – the animation has reached time 5510, which is within TP2.
At that time, only two routers in the topology show any appreciable losses: access router
I0a (yellow) and access router K0a (blue). We can select specific routers in the topology
and the related curve in the time plot will be emphasized. We can also interactively
explore other router characteristics, such as utilization and buffer saturation. DiVisa
animations helped us discover that backbone routers could be overrun under some
conditions in TP2. Using this information, we increased the simulated speed of our

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-32

backbone routers. DiVisa animations also helped us to determine that access router K0a
was the most heavily utilized of the access routers during TP2. In summary, availability
of a high-quality data exploration tool and animator, such as DiVisa, can provide an
analyst with the capability to gain global views of the temporal evolution of a simulated
system.

Figure 6-18. Screenshot from DiVisa Animation of the Temporal Evolution of a MesoNet Simulation

6.4 Results
In this section, we report salient results from our analysis of summarized response data
(described in Sec. 6.2.2). As necessary, we provide brief commentaries to explain the
results presented. We give results in four segments: one for each of the three time periods
and one for response data aggregated over the entire 25-minute scenario. We follow a
similar plan for each segment: (1) present results from cluster analysis, (2) present results
from condition-response summaries, (3) present detailed analysis of significant responses
and (4) give a summary of the results for the segment. We defer drawing inferences from
the results until Sec. 6.5, where we report our findings.

6.4.1 Time Period One (TP1)
Recall that TP1 comprises a five-minute period where three long-lived flows commence
within an overall background of normal Web traffic, which includes downloading Web
pages, and occasionally documents. As for any time period, we consider seven

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-33

congestion-control algorithms under a range of 32 conditions, where half the conditions
can be considered uncongested and half congested.

6.4.1.1 Cluster Analysis for TP1. We present two dendogram plots for TP1. Fig. 6-19
gives the cluster analysis for all seven congestion-control algorithms. We annotate the
individual dendograms with a 3 when algorithm 3 appears distinctive. Fig. 6-20 gives the
cluster analysis after omitting response data for algorithm 3.

Figure 6-19. Clustering for Time Period One – Annotated to Identify Distinctive Algorithm 3

6.4.1.2 Condition-Response Summary for TP1. Fig. 6-21 gives the condition-response
summary for TP1. Fig. 6-22 shows the same summary after applying a filter showing
only statistically significant outliers for which the relative effect exceeds 10%.

6.4.1.3 Analysis of Significant Responses for TP1. Based on Figs. 6-21 and 6-22 we
selected several responses for more detailed analysis. Specifically, in Figs. 6-23 to 6-27,
we report analyses for congestion-window increase rate (y2), flow-completion rate (y5),
retransmission rate (y6), completion rate for NN flows (y31), and average number of
connecting flows (y42). We omitted y44 and y45 because (as we explained earlier) they
provide little insight into differences in behavior among the congestion-control
algorithms. We selected y5 and y31 based on Fig. 6-21 even though they did not pass the
10% filter required for reporting in Fig. 6-22. We made these additional selections
because the absolute magnitude of each effect within an individual measurement interval
appears large enough to influence system behavior when accumulated over time. While
we could have chosen completion rates for other flow classes (e.g., y19 or y25), NN
flows make up the largest proportion of all flows active at any given time; thus, the
significance of this flow class appears to be highest.

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-34

Figure 6-20. Clustering for Time Period One –Algorithm 3 Omitted

Figure 6-21. Condition-Response Summary for Time Period One

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-35

Figure 6-22. Condition-Response Summary for Time Period One – 10% Filter Applied

Figure 6-23. Detailed Analysis for Congestion-Window Increase Rate in Time Period One

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-36

Figure 6-24. Detailed Analysis for Flow-Completion Rate in Time Period One

Figure 6-25. Detailed Analysis for Retransmission Rate in Time Period One

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-37

Figure 6-26. Detailed Analysis for NN Flow Completion Rate in Time Period One

Figure 6-27. Detailed Analysis for Number of Connecting Flows in Time Period One

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-38

6.4.1.4 Summary of Results for TP1. Given normal Web traffic, FAST (algorithm 3)
exhibits distinctive behavior, which appears to grow more distinctive with increasing
congestion. The other algorithms behave quite similarly under most conditions, though
BIC (algorithm 1) and Scalable TCP (algorithm 6) appear to cluster together under some
conditions. When faced with congestion, FAST exacerbates the situation (as shown by
the higher rate of increase in congestion windows), which leads to more packet losses and
then to a higher rate of retransmissions. Increased losses under FAST also appear to
increase the difficulty for establishing flows because more SYN and SYN+ACK packets
are lost – as a result, on average more flows are pending in the connecting state.
Increased retransmissions also cause flows to send more packets in order to ensure all
data is successfully received. This means that flows take longer to finish, as shown by the
lower completion rate for flows in general and for NN flows in particular.

6.4.2 Time Period Two (TP2)
During TP2 DD flows become jumbo file transfers, which lead to increased congestion
within directly connected routers and also increases packet load on the network
backbone. The remaining flow classes continue to generate normal Web traffic during
TP2; however, the net effect of the jumbo flows is to increase network-wide congestion.

6.4.2.1 Cluster Analysis for TP2. Fig. 6-28 shows an annotated set of 32 dendrograms for
TP2. Since the level of congestion has increased throughout the network and algorithm 3
appears sensitive to congestion, one might expect the behavior of algorithm 3 to become
more distinctive. Note that algorithm 3 now appears as distinctive in 28 of the conditions
– versus only 23 conditions in TP1. Fig. 6-29 gives dendrograms for TP2 but with the
data for algorithm 3 omitted – none of the other algorithms stand out.

Figure 6-28. Clustering for Time Period Two – Annotated to Identify Distinctive Algorithm 3

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-39

Figure 6-29. Clustering for Time Period Two –Algorithm 3 Omitted

6.4.2.2 Condition-Response Summary for TP2. Fig. 6-30 gives the condition-response
summary for TP2. Fig. 6-31 shows the same summary after applying a filter showing
only statistically significant outliers for which the relative effect exceeds 30%. Algorithm
3 stands out in both figures.

Figure 6-30. Condition-Response Summary for Time Period Two

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-40

Figure 6-31. Condition-Response Summary for Time Period Two – 30% Filter Applied

6.4.2.3 Analysis of Significant Responses for TP2. Based on Figs. 6-30 and 6-31 we
selected several responses for more detailed analysis. Specifically, in Figs. 6-32 to 6-37,
we report analyses for congestion-window increase rate (y2), flow-completion rate (y5),
retransmission rate (y6), average goodput for DF flows (y13), average number of active
DF flows (y14), and average number of connecting flows (y42). In Figs. 6-38 and 6-39
we show the analyses for average goodput on the long (L1) and medium (L2) distance
long-lived flows. We selected y5 based on Fig. 6-30 even though it did not pass the 30%
filter required for reporting in Fig. 6-31. We made this additional selection because the
absolute magnitude of the effect within an individual measurement interval appears large
enough to influence system behavior when accumulated over time.

6.4.2.4 Summary of Results for TP2. FAST (algorithm 3) exhibits most of the same
distinctive behaviors seen during TP1. The increased congestion in TP2 seems to enhance
these effects, most of which now show up as relative differences of 30% or more. A new
pattern of behavior arises with respect to DF flows. The number of active DF flows
accumulates for algorithm 3 during TP2, which leads to lower average goodput on those
flows. We can again attribute this to the congestion sensitivity demonstrated by FAST.
Under normal Web traffic, network parameter settings for the experiment tend to
generate congestion at fast access routers. During TP2, DD flows experience jumbo file
transfers; thus, DF flows are affected by the normal congestion pattern as well as
increased congestion due to jumbo files. Given this increased congestion, algorithm 3 has
more trouble completing DF flows than the other algorithms – increased retransmissions
on DF flows lead to longer holding times to complete the flows.

A new behavior appears in TP2 with respect to the long and moderate distance
long-lived flows. Algorithm 6 (Scalable TCP) tends to achieve higher average goodput.

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-41

We consider this a tendency because there is no widespread pattern of statistical
significance. We attribute this tendency to unfairness inherent in Scalable TCP. Under
Scalable TCP (during TP1) long-lived flows establish a high congestion window. DD
flows arising during TP2 have difficulty claiming a fair share of bandwidth from the
entrenched long-lived flows.

Figure 6-32. Detailed Analysis for Congestion-Window Increase Rate in Time Period Two

Figure 6-33. Detailed Analysis for Flow-Completion Rate in Time Period Two

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-42

Figure 6-34. Detailed Analysis for Retransmission Rate in Time Period Two

Figure 6-35. Detailed Analysis for Average Goodput on DF Flows in Time Period Two

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-43

Figure 6-36. Detailed Analysis for Average Number of Active DF Flows in Time Period Two

Figure 6-37. Detailed Analysis for Average Number of Connecting Flows in Time Period Two

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-44

Figure 6-38. Detailed Analysis for Average Goodput on Long-lived Flow L1 in Time Period Two

Figure 6-39. Detailed Analysis for Average Goodput on Long-lived Flow L2 in Time Period Two

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-45

6.4.3 Time Period Three (TP3)
During TP3 no new jumbo file transfers are initiated on DD flows; what remains is for
residual jumbo transfers to complete as the network transitions back toward normal Web
traffic. The degree to which normal conditions can be restored depends upon how many
jumbo transfers were created during TP2.

6.4.3.1 Cluster Analysis for TP3. Fig. 6-40 shows an annotated set of 32 dendrograms for
TP3. Since the level of congestion stays relatively high, as residual jumbo file transfers
drain from the system, algorithm 3 remains distinctive. When omitting responses for
algorithm 3, cluster analysis (Fig. 6-41) identifies no distinctive algorithm.

Figure 6-40. Clustering for Time Period Three – Annotated to Identify Distinctive Algorithm 3

6.4.3.2 Condition-Response Summary for TP3. Fig. 6-42 gives the condition-response
summary for TP3. Fig. 6-43 shows the same summary after applying a filter showing
only statistically significant outliers for which the relative effect exceeds 30%. Algorithm
3 stands out in both figures – the distinctiveness is quite similar to that seen for TP2. Fig.
6-43 also reveals two new patterns. First, algorithm 2 (CTCP) shows a large increase in
the average congestion window, which is pervasive over many conditions during TP3.
Second, average goodput lags on the higher propagation, long-lived TCP flows (L1 and
L2) as the DD paths recover from the period of jumbo file transfers.

6.4.3.3 Analysis of Significant Responses for TP3. Based on Figs. 6-42 and 6-43 we
selected several responses for more detailed analysis. Specifically, in Figs. 6-44 to 6-49,
we report analyses for congestion-window increase rate (y2), flow-completion rate (y5),
retransmission rate (y6), average goodput on DF flows (y13), number of active DF flows
(y14) and number of connecting flows (y42). Fig. 6-50 illustrates the substantial increase

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-46

in congestion window size (y4) for algorithm 2. Fig. 6-51 illustrates (with flow L2) how
goodput on long-lived flows tends to lag under standard TCP.

Figure 6-41. Clustering for Time Period Three –Algorithm 3 Omitted

Figure 6-42. Condition-Response Summary for Time Period Three

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-47

Figure 6-43. Condition-Response Summary for Time Period Three – 30% Filter Applied

Figure 6-44. Detailed Analysis for Congestion-Window Increase Rate in Time Period Three

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-48

Figure 6-45. Detailed Analysis for Flow-Completion Rate in Time Period Three

Figure 6-46. Detailed Analysis for Retransmission Rate in Time Period Three

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-49

Figure 6-47. Detailed Analysis for Average Goodput on DF Flows in Time Period Three

Figure 6-48. Detailed Analysis for Average Number of Active DF Flows in Time Period Three

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-50

Figure 6-49. Detailed Analysis for Average Number of Connecting Flows in Time Period Three

Figure 6-50. Detailed Analysis for Average Congestion-Window Size in Time Period Three

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-51

Figure 6-51. Detailed Analysis for Average Goodput on Long-lived Flow L2 in Time Period Three

6.4.3.4 Summary of Results for TP3. FAST (algorithm 3) exhibits the same distinctive
behaviors seen during TP1 and TP2. Residual congestion from TP2 maintains these
effects at an enhanced level; most effects continue to show relative differences of 30% or
more. A new pattern of behavior arises with respect to average congestion-window size,
where algorithm 2 (CTCP) shows a substantial increase over other algorithms – this
difference is limited to TP3. Results also show that average goodput for long-lived flows
using algorithm 7 (TCP) tends to lag when recovering from the congested period (TP2).
This trait of standard TCP congestion-control was an initial stimulus for many of the
proposals for alternate congestion-control mechanisms.

6.4.4 Aggregated Responses (Totals)
Here we present analyses for the 28 responses collected over the entire 25-minute
scenario. Recall that most of these responses are aggregated counts. Selected responses
augment those counts with average values, specifically SYN rate on connected flows and
goodput on completed flows. Whereas the previous analyses focused on differences in
instantaneous behavior averaged over 5-minute intervals, the current analysis examines
the effects of behavioral differences viewed over a longer period.

6.4.4.1 Cluster Analysis for Totals. Fig. 6-52 shows the usual annotated set of 32
dendrograms, but this time clustering based on the 28 aggregate responses. Similar to the
cluster analyses for the three time periods, algorithm 3 appears distinctive in many (24)
of the conditions. Fig. 6-53 shows the results from clustering with algorithm 3 responses
excluded. No significant difference appears among the remaining algorithms, though
algorithms 1 and 6 exhibit some tendency to be paired.

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-52

6.4.4.2 Condition-Response Summary for Totals. Fig. 6-54 gives the condition-response
summary for the aggregate responses. One finding from the figure is that algorithm 3
(FAST) tends to input more packets but not to output more packets – this is congruent
with a higher loss rate, and consequent increased retransmission rate. For path classes
prone to congestion, algorithm 3 provides lower average goodput, which means these
flows require more retransmissions and take longer to complete. In addition, algorithm 3
connects and completes fewer flows – among a wide range of flow classes and across the
entire set of backbone routers. As expected, based on analysis of the time periods,
algorithm 3 shows a higher average SYN rate over most conditions. This is congruent
with a larger number of flows pending in the connecting state, and with a higher
retransmission rate due to lost packets.

Figure 6-52. Clustering for Totals – Annotated to Identify Distinctive Algorithm 3

6.4.4.3 Analysis of Significant Responses for Totals. Based on Fig. 6-54 we selected two
responses for detailed analysis. Algorithm 3 completed fewer flows under most
conditions for most flow classes – including DF flows (T.y8), DN flows (T.y10), FF
flows (T.y12), FN flows (T.y14) and NN flows (T.y16). For these flow classes, algorithm
3 also usually exhibited lower average goodput. Algorithm 3 completed fewer flows
across all backbone routers in the network. Rather than show detailed analyses for all of
these categories, we present, in Fig. 6-55, an analysis of the aggregate number of flows
completed (T.y4), where algorithm 3 underperforms under most conditions. We also
show, in Fig. 6-56, a detailed analysis of the average SYN rate. In all but two conditions
(the least and most congested), algorithm 3 leads to more SYNs being sent on average to
establish flows. This supports earlier observations that algorithm 3 tends to have
substantially more flows pending in the connecting state at any instant in time.

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-53

Figure 6-53. Clustering for Totals –Algorithm 3 Omitted

Figure 6-54. Condition-Response Summary for Totals

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-54

Figure 6-55. Detailed Analysis for Aggregate Number of Flows Completed over 25-minute Scenario

Figure 6-56. Detailed Analysis for Average SYN Rate for Connecting Flows over 25-minute Scenario

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-55

6.4.4.4 Summary of Results for Totals. Under the conditions investigated in this
experiment, FAST (algorithm 3) completes fewer flows during the 25-minute scenario.
While FAST completes only up to 2% fewer flows, this amounts to between a million
and 10 million flows over 25 minutes – 40000 to 400000 flows a minute. In addition,
FAST impedes the ability of flows to establish connections.

6.5 Findings
From the results reported in Sec. 6.4, we identified four main findings, as discussed
below. In addition, detailed analysis of individual responses, when excluding algorithm 3,
identified some tendencies, which we outline in Sec. 6.5.5.

6.5.1 Finding #1
Setting aside algorithm 3 (FAST), for the experiment scenario and conditions examined
in this section, the alternate congestion-control algorithms exhibited indistinguishable
macroscopic behavior and modest differences in user experience. In other words there
was no overall advantage to be gained in switching the entire network to a particular
alternate congestion-avoidance scheme, nor was there any overall disadvantage in
switching. (Remember we are excluding FAST from this finding.) Selected users could
experience somewhat higher throughputs when using alternate congestion-control
algorithms during periods of competing large file transfers; however, no widespread
improvement in user experience should be expected.

To understand this finding, recall that slow-start procedures are unaffected by
alternate congestion-control mechanisms, which define replacements only for the TCP
congestion-avoidance phase. No matter what congestion-control mechanism is used, a
flow commences operating in initial slow-start and switches to congestion avoidance only
after a packet loss. Aside from FAST and TCP Reno, the alternate congestion-avoidance
procedures specify an activation threshold (either a certain congestion-window size or
duration since the most recent loss). Below that threshold, a flow adopts standard TCP
congestion-avoidance procedures; above that threshold the flow adopts alternate
congestion-avoidance procedures.

Recall that in our experiment we simulated 32 conditions covering a range of
congestion patterns, which could be classified roughly into 16 uncongested and 16
congested conditions. Condition 12 created the least congestion, while condition 21
created the most congestion. Of course, even uncongested conditions include localized
congestion arising from the onset of jumbo file transfers during TP2, as well as from hot
spots appearing from time-to-time at particular access routers. For example, in Fig. 6-57,
we plot data under condition 12 for algorithm 1 (we chose to plot BIC because it has the
lowest activation threshold: congestion-window > 14). Note that most of the 12000 or so
active flows (red) in TP1 (3000 – 4500) and TP3 (6000 – 7500) operate in initial slow
start (green). This means that these active flows complete their file transfers without
packet loss. For flows of this nature, congestion-avoidance is never activated; thus, one
would expect alternate congestion-avoidance procedures to make no difference. During
TP2 (4500 – 6000), jumbo file transfers on DD flows cause concentrated congestion at
directly connected access routers. As Fig. 6-57 shows, even during TP2 the number of
flows operating in congestion avoidance reached a level of around 1000 out of 13000
(under 10%) of active flows. Half of the flows operated in normal (brown) congestion-

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-56

control mode (i.e., congestion window < 14) and half operated using BIC (blue)
congestion-avoidance procedures. One would expect DD flows operating in alternate
congestion-control mode to achieve higher throughput than the DD flows operating in
normal congestion-control mode. So, selected users could experience improved
throughput over others during TP2.

Figure 6-57. Five Time Series Showing the Evolution of Flow States over Three Time Periods for
Algorithm 1 (BIC) under Condition 12

In Fig. 6-58, we plot the equivalent evolution of flow states for BIC under the

most congested condition: 21. Of the 145000 active flows (red) in TP1 and TP3 about
140000 flows (brown) operate in normal congestion-control mode and the rest (green)
operate in initial slow start. Under these conditions, alternate congestion-avoidance
procedures are not activated. During TP2, the onset of jumbo file transfers leads to about
1500 flows (blue) (around 1%) using alternate congestion-avoidance procedures. This
small proportion of flows adopting alternate procedures cannot be expected to make a
large difference in macroscopic network behavior.

What about user experience? Most flows in a heavily congested network, or in
heavily congested portions of a network, will be sharing paths with many other flows. For
this reason, one should expect most flows to be operating within normal congestion-
control mode; these flows cannot achieve a large enough congestion-window size (or
avoid losses for long enough) to activate alternate congestion-avoidance procedures. On
the other hand, flows transiting very fast (DD) paths may be able to benefit from alternate
congestion-control procedures. Overall pattern analysis found that average goodput on
DD flows in TP2 showed statistically significant improvement for the extreme algorithm
in only three (4, 15 and 28) of 32 conditions; the three conditions were all uncongested.
On the other hand, Table 6-32 gives, for each congestion-control algorithm, the average
goodput on DD flows when averaged across all conditions during TP2, as well as the

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2000

4000

6000

8000

1 .104

1.2 .104

1.4 .104
Evolution of Flows Condition 12 - BIC

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

Alternate Congestion Control

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2000

4000

6000

8000

1 .104

1.2 .104

1.4 .104
Evolution of Flows Condition 12 - BIC

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

Alternate Congestion Control

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2000

4000

6000

8000

1 .104

1.2 .104

1.4 .104
Evolution of Flows Condition 12 - BIC

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

Alternate Congestion Control

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2000

4000

6000

8000

1 .104

1.2 .104

1.4 .104
Evolution of Flows Condition 12 - BIC

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

Alternate Congestion Control

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-57

minimum and maximum average goodputs. The figures in Table 6-32 suggest that the
alternate congestion-control mechanisms do, on average, provide better user experience
on DD flows during TP2. In fact, during TP2 TCP yields lowest average goodput;
however, this is only 1-7% lower than for the other algorithms. The detailed analysis of
average goodput on DD flows (y9) during TP2 also shows that a particular alternate
congestion-control algorithm can improve goodput by 2-19% over the average for
specific conditions. However, there is no particular pattern as to which alternate
congestion-control algorithm provides best goodput. From this, we conclude that under
some conditions users can experience higher goodput when using alternate congestion-
control algorithms on DD flows that compete to complete large file transfers. The overall
improvement when averaged across a wide range of conditions would, however, likely be
below 10%.

Figure 6-58. Five Time Series Showing the Evolution of Flow States over Three Time Periods for
Algorithm 1 (BIC) under Condition 21

Table 6-32. Average, Minimum and Maximum Goodput (pps) on DD Flows for Each Congestion-
Control Algorithm during TP2 when Averaged over All 32 Conditions

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2 .104

4 .104

6 .104

8 .104

1 .105

1.2 .105

1.4 .105

1.6 .105
Evolution of Flows Condition 21 - BIC

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

Alternate Congestion Control
3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2 .104

4 .104

6 .104

8 .104

1 .105

1.2 .105

1.4 .105

1.6 .105
Evolution of Flows Condition 21 - BIC

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

Alternate Congestion Control
3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2 .104

4 .104

6 .104

8 .104

1 .105

1.2 .105

1.4 .105

1.6 .105
Evolution of Flows Condition 21 - BIC

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

Alternate Congestion Control
3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2 .104

4 .104

6 .104

8 .104

1 .105

1.2 .105

1.4 .105

1.6 .105
Evolution of Flows Condition 21 - BIC

Time

A
ct

iv
e

Fl
ow

s

Sending Flows

Normal Congestion Control

Connecting Flows

Flows in Initial Slow Start

Alternate Congestion Control

3680.503907.044085.803724.644201.024155.304079.63Maximum

430.25437.13431.58438.84474.47436.93461.27Minimum

1184.581241.561216.961193.471277.231242.591260.62Average

Average
Goodput

TCPScalableHTCPHSTCPFASTCTCPBIC

3680.503907.044085.803724.644201.024155.304079.63Maximum

430.25437.13431.58438.84474.47436.93461.27Minimum

1184.581241.561216.961193.471277.231242.591260.62Average

Average
Goodput

TCPScalableHTCPHSTCPFASTCTCPBIC

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-58

In summary, switching the entire network from standard TCP congestion-control
to BIC, CTCP, HSTCP, HTCP or Scalable TCP should not cause large shifts in
macroscopic network behavior. Further, Web-browsing users would see little difference
in their experience. Under uncongested conditions typical file transfers complete in initial
slow start. Under heavily congested conditions typical file transfers enter normal
congestion-avoidance mode. On the other hand, switching to an alternate congestion-
control mechanism could modestly benefit selected users with high capacity access paths
during periods where large file transfers compete for bandwidth on shared, high-capacity
paths. These findings are limited to cases where all users on the network: (a) have a high
initial slow-start threshold and (b) adopt the same congestion-control mechanism. In Sec.
7 we investigate the case of a lower initial slow-start threshold. We address the case of
heterogeneity among congestion-control mechanisms in Sec. 8 and Sec. 9.

6.5.2 Finding #2
When deployed network wide, alternate congestion-control algorithm 3 (FAST) can
produce macroscopic changes in network behavior at congested places in the topology
and during congested periods. Further, these changes can present Web-browsing users
with lower average goodputs and longer connection times. The influence of these effects
increases with increasing congestion. These findings suggest that deploying FAST on a
wide scale could incur significant risk.

Figure 6-59. Reproduction of Fig. 5-22, Showing Evolution of cwnd for Two FAST Flows
(F = 200, rtt = 42 ms)

To understand this finding, recall from Sec. 5.4.4 that FAST exhibits rapid

oscillations in congestion-window size when a path has insufficient buffers to contain the
packets that the FAST algorithm attempts to maintain queued at a bottleneck. The
resulting behavior is illustrated by Fig. 5-22, which, for convenience, we reproduce here
as Fig. 6-59. In this figure, two FAST flows are attempting to maintain 100 packets each
through a bottleneck router that has buffers for only 176 packets. Insufficient buffer space

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 809 avg. cwnd = 814

avg. red cwnd = 401
avg. blue cwnd = 413

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 809 avg. cwnd = 814

avg. red cwnd = 401
avg. blue cwnd = 413

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-59

results in packet losses, followed by (50%) window reduction, followed by rapid increase
in congestion-window size. This cycle repeats quite rapidly because FAST flows update
their target congestion window frequently (every 20 ms here). This rapid oscillation in
congestion window appears to be the source for the deleterious behavior exhibited by
FAST in congested locations and at times of significant network-wide congestion.

 When a large number of flows simultaneously transit a network router, the
overall effect can be to flood the router with many packets. When the number of flows is
sufficient to overrun the available buffers in the router, FAST flows exhibit an oscillatory
behavior that can create additional congestion that causes the flows to remain in
oscillation for an extended time. For example, Fig. 6-60 shows the evolution of the
congestion window for long-lived FAST flow L2 during 500 measurement intervals
within TP2 under condition 21. For comparison, Fig. 6-61 gives the behavior of standard
TCP Reno under the same circumstances. Faced with congestion, the other alternate
congestion-control algorithms we simulated oscillate with a frequency closer to TCP than
to FAST. Figs. 6-62 through 6-66 show the behavior for the remaining congestion-control
algorithms under condition 21 for the same measurement intervals in TP2.

Figure 6-60. Evolution of Congestion Window under FAST for Long-Lived Flow L2 during 500
Measurement Intervals within TP2 under Condition 21

The rapid oscillatory behavior of FAST results in numerous packet losses, which

leads to a larger rate of congestion-window increase (as shown in Figs. 6-23, 6-32 and 6-
44) and to a higher retransmission rate (as shown in Figs. 6-25, 6-34 and 6-46). The
higher loss rate also causes a higher SYN rate (as shown in Fig. 6-56), which leads to a
larger number of flows pending in a connecting state (as shown in Figs. 6-27, 6-37 and 6-
49) because flows take longer to connect. Flows also take longer to complete because a
larger number of packets must be retransmitted. This effect can be seen in Figs. 6-24, 6-
26, 6-33 and 6-45, which show that FAST flows have a significantly lower completion
rate. The net effect of a lower completion rate appears in Fig. 6-55, which shows that

0

50

100

150

200

250

300

350

4600 4700 4800 4900 5000 5100

Time

C
W

N
D

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-60

FAST completes many fewer flows (than other algorithms) over a 25-minute period of
network evolution. A lower rate of flow completions also means that more flows can be
active simultaneously in congested locations in the topology. See, for example, Figs. 6-36
and 6-48. As a result, the average goodput will be lower for flows transiting congested
areas, as shown in Figs. 6-35 and 6-47.

Figure 6-61. Evolution of Congestion Window under TCP Reno for Long-Lived Flow L2 during 500

Measurement Intervals within TP2 under Condition 21

Figure 6-62. Evolution of Congestion Window under BIC for Long-Lived Flow L2 during 500
Measurement Intervals within TP2 under Condition 21

0

50

100

150

200

250

300

350

4600 4700 4800 4900 5000 5100

Time

C
W

N
D

0

50

100

150

200

250

300

350

4600 4700 4800 4900 5000 5100

Time

C
W

N
D

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-61

Figure 6-63. Evolution of Congestion Window under CTCP for Long-Lived Flow L2 during 500
Measurement Intervals within TP2 under Condition 21

Figure 6-64. Evolution of Congestion Window under HSTCP for Long-Lived Flow L2 during 500
Measurement Intervals within TP2 under Condition 21

0

50

100

150

200

250

300

350

4600 4700 4800 4900 5000 5100

Time

C
W

N
D

0

50

100

150

200

250

300

350

4600 4700 4800 4900 5000 5100

Time

C
W

N
D

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-62

Figure 6-65. Evolution of Congestion Window under HTCP for Long-Lived Flow L2 during 500
Measurement Intervals within TP2 under Condition 21

Figure 6-66. Evolution of Congestion Window under Scalable TCP for Long-Lived Flow L2 during
500 Measurement Intervals within TP2 under Condition 21

0

50

100

150

200

250

300

350

4600 4700 4800 4900 5000 5100

Time

C
W

N
D

0

50

100

150

200

250

300

350

4600 4700 4800 4900 5000 5100

Time

C
W

N
D

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-63

In summary, a large network with many simultaneously active flows can induce
congestion at various times and locations within the topology. When congestion is
sufficient to induce losses, flows using the FAST algorithm can enter a rapid oscillatory
behavior that exacerbates congestion. As a result, the network can exhibit a higher overall
loss rate with consequent increase in retransmissions. Flows can take longer to connect
and complete. The number of flows completed in such a network can be significantly
reduced over long time spans. Should FAST be deployed throughout a network, typical
Web-browsing users could experience lower average goodput on flows transiting through
congested areas. These findings are limited to cases where all users on the network: (a)
adopt FAST and (b) FAST is configured as discussed in Sec. 5.2.3 with fixed F = 200.
In Sec. 7 we also investigate the case where FAST is configured with -tuning enabled.

6.5.3 Finding #3
Under certain conditions, CTCP (algorithm 2) can drive congestion-window size to
substantially higher values than the other congestion-control algorithms we simulated. In
our experiment, this behavior arose during TP3, as shown in Fig. 6-50, which analyzes
average congestion-window size. Detailed examination of the relevant time series
revealed that this increase in congestion-window size can be attributed solely to DD
flows.

Recall that during TP2 jumbo file transfers were initiated on DD flows, which
introduced substantial congestion within directly connected access routers. At the onset
of TP3 no further jumbo transfers are initiated and congestion eases as residual jumbo
transfers complete. During this easing period, the congestion window on DD flows can
increase – the rate of increase depends upon the level of congestion created during TP2.
For example, Fig. 6-67 plots, for six congestion-control algorithms, the increase in
average congestion window for DD flows during TP3 under condition 12.

Figure 6-67. Average Congestion-Window Size of DD Flows during TP3 under Condition 12 for BIC,

FAST, HSTCP, HTCP, Scalable TCP and TCP Reno

0

5000

10000

15000

20000

25000

30000

6000 6500 7000 7500

Time

A
VG

. C
W

N
D

 D
D

 F
LO

W
S

FAST

HTCP

SCALABLE
BIC

HSTCP
TCP

PEAKS AT 2.5 x 104

0

5000

10000

15000

20000

25000

30000

6000 6500 7000 7500

Time

A
VG

. C
W

N
D

 D
D

 F
LO

W
S

FAST

HTCP

SCALABLE
BIC

HSTCP
TCP0

5000

10000

15000

20000

25000

30000

6000 6500 7000 7500

Time

A
VG

. C
W

N
D

 D
D

 F
LO

W
S

FAST

HTCP

SCALABLE
BIC

HSTCP
TCP

PEAKS AT 2.5 x 104

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-64

Fig. 6-67 shows that five of the congestion-control algorithms provide a linear
increase (with a small slope) in average congestion-window size, up to a maximum of
about 4000 packets. The increase for FAST, which also appears approximately linear but
with larger slope, peaks at around 25000 packets. The situation for CTCP is much
different, as shown in Fig. 6-68, where under the same conditions the average congestion-
window size increases exponentially, reaching a peak of about 1 million packets.

Figure 6-68. Average Congestion-Window Size of DD Flows during TP3 under Condition 12 for
CTCP

To understand this distinctive behavior we must revisit the window-management

algorithm used by CTCP. Specifically, we are interested in equation (17) from Sec. 5.2.2.
We repeat the equation here for convenience.

(17)

Equation (17) specifies a periodic algorithm used by CTCP to adjust the delay window as
needed every round-trip time (RTT). The CTCP delay window augments the congestion

0

200000

400000

600000

800000

1000000

1200000

6000 6500 7000 7500

Time

A
VG

. C
W

N
D

 D
D

 F
LO

W
S

PEAKS AT 106

0

200000

400000

600000

800000

1000000

1200000

6000 6500 7000 7500

Time

A
VG

. C
W

N
D

 D
D

 F
LO

W
S

PEAKS AT 106

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-65

window. The highlighted line in (17) shows that CTCP will increase the delay window
exponentially when no congestion has been detected and the actual congestion window is
within (C =) 30 of the expected congestion window. In other words, if there is no
congestion and the actual window is close to what is expected from previous
measurements, then perhaps the window can be increased because congestion is easing.

In our scenario, DD flows that start during TP2 are likely to face stiff congestion,
which implies that the initial minimum RTT for these flows will be somewhat high. At
the onset of TP3 congestion eases as residual jumbo transfers complete. Easing
congestion causes measured SRTT (smoothed RTT) to fall; thus, minimum RTT recorded
on these flows will be driven down. As a result, the minimum RTT and the measured
SRTT will be identical, or nearly so; thus, the difference in expected and actual
congestion window, as computed by the CTCP algorithm, will be around zero. As SRTT
continues to fall, and minimum RTT falls with it, the highlighted line in (17) will be
executed during each RTT. Naturally, this leads to an exponential increase in the
congestion window.

Under our scenario, this exponential congestion-window increase has little
practical implication because a source cannot transmit faster than its maximum interface
speed (or the maximum interface speed of a slower receiver). Note, however, that under
easing congestion and no packet losses the CTCP congestion window continues to
increase exponentially until a transfer completes even though the source is unable to
increase its transmission rate. This situation is analogous to initial slow start, which also
increases the congestion window exponentially. Given an arbitrarily high slow-start
threshold, a large file transfer that proceeds without packet loss will likely remain in
initial slow start until the transfer completes. Under these circumstances the congestion
window grows exponentially even though the source is unable to increase its transmission
speed beyond a physical maximum. In theory, a CTCP flow (or any flow operating within
initial slow start) could achieve a very high window (e.g., millions of packets). A
subsequent loss on a flow that has achieved such a high window could require many
losses to reduce the window (by 50% per loss) to a point where the transmission rate is
throttled sufficiently to respond to the congestion signal. The possibility for such an
outcome suggests that some practical upper limit should be placed on delay-window size.

6.5.4 Finding #4
Focusing in on longed-lived flows reveals several points of interest. First, during TP1 all
congestion-control algorithms showed nearly identical goodput on the three long-lived
flows – the less the congestion, the closer the goodput. This occurs because the initial
slow-start threshold was set to an arbitrarily high value. During TP1, when the long-lived
flows commenced amid a background of Web traffic, initial slow-start was typically able
to carry the long-lived flows to the maximum achievable transmission rate (960 Mbps).
Since all congestion-control algorithms adopted identical initial slow-start procedures,
this finding should not be surprising. (In Sec. 7 we investigate effects from a lower initial
slow-start threshold.)

When heavy congestion strikes, as jumbo file transfers commence in TP2,
algorithm 6 (Scalable TCP) exhibited a tendency to provide higher goodput on the long-
lived flows than did the other congestion-control algorithms. This comparative advantage
of Scalable TCP tended to increase with increasing propagation delay and decrease with

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-66

increasing congestion. Detailed analyses of long-lived flows (e.g., 6-38 and 6-39) did not
find the goodput advantage of Scalable TCP to be statistically significant under many
conditions; however, this appears influenced by the wide range of goodputs exhibited.
The reason that Scalable TCP tended to provide higher goodputs on long-lived flows
during TP2 is that newly arriving flows have more difficulty claiming their share of
bandwidth when the competing flows are all using the Scalable congestion-avoidance
algorithm. This difficulty was illustrated in Sec. 5 (see Figs. 5-31 to 5-33). Further
evidence of this effect is shown in Fig. 6-69, which compares algorithms 3 (FAST) and 6
(Scalable) with respect to decrease in congestion-window size for all three long-lived
flows at the onset of TP2 under condition 27 (light-to-moderate congestion).

Figure 6-69. Comparing Scalable TCP (STCP) and FAST with respect to Falling Congestion-
Window for Three Long-Lived Flows at the Onset of TP2 under Condition 27

The comparative advantage of Scalable TCP vanished in TP3 as congestion

abated and most of the alternate congestion-control algorithms recovered well. The most
notable effect for long-lived flows during TP3 is that standard TCP lags in recovering
peak goodput. This finding is as expected. In fact, the sluggishness shown by standard
TCP when recovering from congestion provides motivation for researchers to propose
alternate congestion-control algorithms.

6.5.5 Tendencies
Given that algorithm 3 showed several distinctive behaviors, we discarded its response
data and then conducted our detailed analyses a second time on the remaining
congestion-control algorithms. As already demonstrated, the remaining algorithms could
not be distinguished using tests for statistically significant differences. On the other hand,
we noted earlier that algorithms 1 (BIC) and 6 (Scalable TCP) showed some tendency to

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4500 4520 4540 4560 4580 4600

Time

C
W

N
D

SCTP LL1
STCP LL2
STCP LL3
FAST LL1
FAST LL2
FAST LL3

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-67

behave similarly to each other and distinct from other algorithms. Based on our
supplementary analyses, we identified some tendencies that, though they cannot be
considered findings, might illuminate differences among alternate congestion-control
algorithms (excluding FAST). The tendencies we identify are from rather small
differences in relative and absolute effect. If nothing else, these tendencies help to
explain why algorithms 1 and 6 clustered together under many conditions.

The first observation to note is that algorithms 1 and 6 behaved more similarly
under congested conditions. In part this is due to the fact that all the algorithms tended to
behave similarly under uncongested conditions; thus, behavioral distinctions appeared
with increasing congestion. We note that algorithms 1 and 6 tended to push more packets
through the network, while completing fewer flows. Algorithms 5 (HTCP) and 7 (TCP)
exhibited the opposite tendencies (i.e., fewer packets pushed through and more flows
completed). One factor affecting these trends is that algorithms 1 and 6 tended to
complete fewer NN flows, which were most numerous and also had the lowest potential
for goodput, while algorithms 2, 5 and 7 tended to complete more of such flows. From
this, we conclude that algorithms 1 and 6 showed a tendency to push more packets
through the network for flows that could achieve higher goodputs (e.g., long-lived flows
and other flows over fast and very fast paths). Another way to look at this is that (in this
experiment) CTCP, HTCP and TCP provided fairer bandwidth sharing under heavy
congestion than either BIC or Scalable TCP. This confirms differences demonstrated
earlier in Sec. 5.4. These differences led to some distinctions in network-wide behavior.

The average congestion-window size tended to be higher under BIC and Scalable
TCP; this higher average was due largely to bigger windows on advantaged flows.
Pushing more packets into the network also led BIC and Scalable TCP to have higher
retransmission rates, larger queuing delays and higher SYN rates (along with more flows
pending in the connecting state). While not statistically significant in this experiment, the
differences we highlight provide some tendencies that might separate BIC and Scalable
TCP qualitatively from other congestion-control algorithms.

6.6 Conclusions
In this section we described an experiment comparing alternate congestion-control
algorithms deployed in a large, fast network with typical Web traffic, a few long-lived
flows and a period of large file transfers between selected locations, followed by easing
congestion. The specific experiment design we described follows a general approach that
we will apply repeatedly in subsequent sections to compare congestion-control
algorithms under various circumstances. In addition, we defined a data-analysis approach
that allowed us to find key differences, where they existed, among various congestion-
control algorithms. We applied the experiment-design and data-analysis approaches to
compare seven alternate congestion-control algorithms within a simulated network. In a
given simulation, all sources in the network used the same congestion-control algorithm.
This unrealistic assumption of homogeneity aided our analysis and allowed us to identify
differences among the algorithms we compared. We subjected each congestion-control
algorithm to the same 32 conditions, which provided a range of congestion levels.

We demonstrated that (aside from FAST) under our scenario and conditions the
alternate congestion-control algorithms exhibited indistinguishable macroscopic behavior
and modest differences in user experience. We showed that the behaviors were more

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT 6-68

similar in uncongested conditions. We also explained why this was the case. We showed
that FAST can exhibit distinctive, undesirable network-wide behavior, which grows more
distinctive under increasing congestion. We described the root cause of this distinctive
behavior, and we argued that deploying FAST throughout the Internet might entail
significant risk. We identified an element of the CTCP delay-window adjustment
algorithm that can lead to an exponential increase in congestion window under particular
circumstances associated with easing congestion. We showed that Scalable TCP tends to
retain a higher congestion window for a longer time on long-lived flows under periods of
increasing congestion. We identified some tendencies for BIC and Scalable TCP to
provide higher goodputs on large flows with high available bandwidth, while providing
lower quality of service on more numerous, typical flows with lower available
bandwidth.

In the next section, we repeat the current experiment while changing only a few
parameters. We scale down the network by one order of magnitude in size (number of
sources) and speed. We intend to show that a scaled-down simulation, which requires
much less computing resources, can reveal similar findings to a larger simulation. We
also lower the initial slow-start threshold to a relatively small number of segments.
Decreasing the initial slow-start threshold will allow flows to enter congestion avoidance
earlier. More frequent activation of congestion avoidance under low congestion might
reveal additional information about differences among congestion-control algorithms.
Finally, we add the -tuning variant of FAST as an eighth congestion-control algorithm
to consider. Here, we seek to understand whether activating -tuning might lead to
improved behavior for FAST.

